精英家教网 > 高中数学 > 题目详情
6.已知幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象不与x轴、y轴相交,且关于原点对称,则m=2.

分析 由已知中幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象不与x轴、y轴相交,可得m2-2m-3≤0,结合m∈N*及函数f(x)的图象关于原点对称,可得答案.

解答 解:∵幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象不与x轴、y轴相交,
则m2-2m-3≤0,
解得:m∈[-1,3],
又由m∈N*
∴m∈{1,2,3},
当m=1时,f(x)=x-4,函数f(x)为偶函数,图象关于y轴对称,
当m=2时,f(x)=x-3,函数f(x)为奇函数,图象关于原点对称,
当m=3时,f(x)=x0,函数f(x)为偶函数,图象关于y轴对称,
故m=2,
故答案为:2

点评 本题考查的知识点是幂函数的图象和性质,熟练掌握幂函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)的导函数f'(x),若f(x)的极大值为f(1),极小值为f(-1),则函数y=f(1-x)f'(x)的图象有可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了得到函数y=4cos2x的图象,只需将函数$y=4cos(2x+\frac{π}{4})$的图象上每一个点(  )
A.横坐标向左平动$\frac{π}{4}$个单位长度B.横坐标向右平移$\frac{π}{4}$个单位长度
C.横坐标向左平移$\frac{π}{8}$个单位长度D.横坐标向右平移$\frac{π}{8}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:${[{{{({3\frac{13}{81}})}^{-3}}}]^{\frac{1}{6}}}$-lg$\frac{1}{100}-{(ln\sqrt{e})^{-1}}$$+{0.1^{-2}}-{(2+\frac{10}{27})^{-\frac{2}{3}}}$$-{(\frac{1}{{2+\sqrt{3}}})^0}$$+{2^{-1-{{log}_2}\frac{1}{6}}}$
(2)已知tan(π-α)=-2; 求sin2(π+α)+sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(  )
A.f(x)=9x+8B.f(x)=3x+2
C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-(a-2)x+a-4;
(1)若函数y=f(x)在区间[1,2]上的最小值为4-a,求实数a的取值范围;
(2)是否存在整数m,n,使得关于x的不等式m≤f(x)≤n的解集恰好为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别为a,b,c(a≥b),$sin({\frac{π}{3}-A})=sinB$,$asinC=\sqrt{3}sinA$,则a+b的最大值为(  )
A.2B.3C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2a-x-\frac{4}{x}-3,x∈(-∞,a)}\\{x-\frac{4}{x}-3,x∈[a,+∞)}\end{array}\right.$有且只有3个不同的零点x1,x2,x3(x1<x2<x3),且2x2=x1+x3,则a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线y=$\sqrt{x}$在矩阵$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$作用下变换所得的图形对应的曲线方程是y=x2

查看答案和解析>>

同步练习册答案