精英家教网 > 高中数学 > 题目详情
16.点M(1,1)关于直线l:2x-y-6=0对称点为N(a,b),则a+b=4.

分析 由条件根据一个点关于某直线的对称点的坐标的求法,利用垂直及中点在轴上这两个条件,求得a、b的值,可得a+b的值.

解答 解:∵点M(1,1)关于直线l:2x-y-6=0对称点为N(a,b),∴$\left\{\begin{array}{l}{\frac{b-1}{a-1}•2=-1}\\{2•\frac{a+1}{2}-\frac{b+1}{2}-6=0}\end{array}\right.$,
求得$\left\{\begin{array}{l}{a=5}\\{b=-1}\end{array}\right.$,∴a+b=4,
故答案为:4.

点评 本题主要考查求一个点关于某直线的对称点的坐标的求法,利用了垂直及中点在轴上这两个条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,E为线段AC上的动点,且$\overrightarrow{AE}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AD}$,则μ-λ的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数y=f(x)关于y轴对称,且在[0,+∞)上是增加的,则下列关系成立的是(  )
A.f(3)<f(-4)<f(-π)B.f(-π)<f(-4)<f(3)C.f(-4)<f(-π)<f(3)D.f(3)<f(-π)<f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图.若输出的S=$\frac{1023}{512}$,则判断框内的条件可以为(  )
A.i<10?B.i≤10?C.i<11?D.i≤11?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin2($\frac{x}{2}$-$\frac{3π}{2}$)+$\sqrt{3}$cos($\frac{π}{2}$+x).
(1)求函数f(x)的最小正周期;
(2)当x∈[0,$\frac{3π}{4}$]时,求f(x)的最大值和最小值及相应的x的值;
(3)若α为第二象限角,且f(α-$\frac{π}{3}$)=$\frac{1}{3}$,求$\frac{cos2α}{1+cos2α-sin2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知lg2=a,lg3=b,则lg1.8=a+2b-1(用a,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.双曲线的中心在原点,焦点在x轴上,过双曲线的右焦点且斜率为$\frac{\sqrt{15}}{5}$的直线交双曲线于P,Q两点,且OP⊥OQ,|PQ|=4,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数的图象过点A(-2,0),B(2,0),C(0,-4).
(1)试求出此函数的解析式;
(2)作出函数y=|f(x)|的大致图象,再判断其奇偶性、单调性(不需推理证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,定点A,B的坐标分别为A(0,27),B(0,3),一质点C从原点出发,始终沿x轴的正方向运动,已知第1分钟内,质点C运动了1个单位,之后每分钟内比上一分钟内多运动了2个单位,记第n分钟内质点运动了an个单位,此时质点的位置为(Cn,0).
(Ⅰ)求an,Cn的表达式;并求数列$\{\frac{1}{{{a_{n-1}}{a_n}}}\}$的前n项和Sn
(Ⅱ)当n为何值时,tan∠ACnB取得最大,最大值为多少?

查看答案和解析>>

同步练习册答案