精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的最小正周期;

2)当时,求函数的值域以及函数的单调区间.

【答案】1;(2)值域为,递增区间为,递减区间为.

【解析】

1)利用两角和与差的正弦函数公式化为一个角的正弦函数,根据周期的公式进行求解;

2)利用(1)得出的正弦函数,根据正弦函数单调区间及性质,可得出增减区间及值域;

fx)=sin2x

sin2x+cos2x

1

2)∵x[]

根据正弦函数的增减区间可知:

2x时,fxmin=﹣1

2xfxmax

fx

又函数fx)的增区间为2x[],减区间为2x[],即函数fx)的增区间为:[]kZ,减区间为[]kZ

又∵x[]

∴递增区间为,递减区间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,的中点是

(1)求异面直线所成角的大小;

(2)求面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《上海市生活垃圾管理条例》于201971日正式实施,某小区全面实施垃圾分类处理,已知该小区每月垃圾分类处理量不超过300吨,每月垃圾分类处理成本(元)与每月分类处理量(吨)之间的函数关系式可近似表示为,而分类处理一吨垃圾小区也可以获得300元的收益.

1)该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低;

2)要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的值域;

2)用表示实数的最大值,记函数,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)求函数的零点个数;

3)当时,求证不等式解集为空集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列111221243124841248165,其中第一项是,第二项是1,接着两项为,接着下一项是2,接着三项是,接着下一项是3,依此类推.记该数列的前项和为,则满足的最小的正整数的值为(

A.65B.67C.75D.77

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120/千克、80/千克、70/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2xZ).每笔订单顾客网上支付成功后,张军会得到支付款的80%.

①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________

②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,为等边三角形,的中点.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的一个侧面为等边三角形,且平面平面,四边形是平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案