精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

【答案】(1) ;(2)详见解析; (3)详见解析.

【解析】试题分析:(1)当时, ,得,所以的单调增区间为;(2) ,得,讨论 ,利用函数在区间上的单调性可以求出函数上的最大值;(3)当时,设函数,则问题转化为证明对于 ,利用导数研究函数在区间的单调性,从而证明成立,于是问题得证.

试题解析:(1)由,得.当时, ,令,得.所以的单调增区间为.

(2)令,得,所以当时, 时, 恒成立, 单调递增;当时, 时, 恒成立, 单调递减;当时, 时, 单调递减; 时, 单调递增,综上,无论为何值,当时, 最大值都为.

,所以当

时,

时, .

(3)令,所以,所以,令

解得,所以当时, 单调递减;当时, 单调递增,所以当时, ,所以函数上单调递增,所以,所以恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出如图所示的频率分布直方图,已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在[100,120]之间的学生人数是(

A.32
B.24
C.18
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且不与轴、轴垂直,且与圆 两点,过的平行线交直线于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设点的轨迹为曲线,直线两点,过且与垂直的直线与圆交于两点,求的面积之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:

产品
资源

甲产品
(每吨)

乙产品
(每吨)

资源限额
(每天)

煤(t

9

4

360

电力(kw·h

4

5

200

劳力(个)

3

10

300

利润(万元)

7

12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位附近只有甲、乙两个临时停车场,它们各有个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:

时间

停车场

甲停车场

乙停车场

如果表中某一时刻剩余停车位数低于该停车场总车位数的,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.

(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;

(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;

(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中 :实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,an+1﹣an﹣2n﹣2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设 ,若对任意的正整数n,当m∈[﹣1,1]时,不等式 恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图空间四边形ABCD,E、F、G、H分别为AB、AD、CB、CD的中点且AC=BD,AC⊥BD,试判断四边形EFGH的形状,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的图象关于直线x=对称,它的周期是π,则以下结论正确的个数(  )
(1)f(x)的图象过点(0,
(2)f(x)的一个对称中心是(,0)
(3)f(x)在[,]上是减函数
(4)将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象.
A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案