精英家教网 > 高中数学 > 题目详情
椭圆G:的两个焦点为是椭圆上一点,且满
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上点的最远距离为
①求此时椭圆G的方程;
②设斜率为的直线与椭圆G相交于不同两点的中点,问:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一圆形纸片的圆心为原点O,点Q是圆外的一定点,A是圆周上一点,把纸片折叠使点A与点Q重合,然后展开纸片,折痕CD与OA交于P点,当点A运动时P的轨迹是
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)
已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,焦点是,则椭圆方程为      ( ■ )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。
(1)当直线的斜率k=1且时,求三角形OAB的面积.
(2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率    (     )
               B                 C               D 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆内的点为中点的弦所在直线方程     (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示椭圆,则实数的取值范围                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的焦点为,且过点
(Ⅰ) 求椭圆的标准方程;
(Ⅱ)设直线交椭圆两点,求线段的中点坐标.

查看答案和解析>>

同步练习册答案