精英家教网 > 高中数学 > 题目详情
4.定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x、y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,x-3y的最大值为(  )
A.10B.8C.6D.4

分析 首先根据已知条件确定函数的性质没利用函数的奇偶性和单调性求解不等式,得到x,y所满足的条件,确定可行域与目标函数,把已知问题转化为线性规划问题,利用目标函数的几何意义确定最值,求解线性规划问题,要注意结合目标函数的几何意义求解最值,该题中,目标函数Z=3x-y的几何意义是直线3x-y-Z=0在y轴上截距的相反数,所以当直线在y轴上截距最小时,对应的目标函数的最大.

解答 解:由于任意的a∈R都有f(-a)+f(a)=0,可知函数y=f(x)为奇函数,
由f(x2-2x)+f(2y-y2)≤0可得f(x2-2x)≤-f(2y-y2),
由函数为奇函数可得式f(x2-2x)≤f(-2y+y2),
∵函数y=f(x)为R上的减函数,
∴x2-2x≥-2y+y2,即x2-y2-2(x-y)≥0,
整理可得,(x+y-2)(x-y)≥0,
作出不等式组$\left\{\begin{array}{l}{(x+y-2)(x-y)≥0}\\{1≤x≤4}\end{array}\right.$所表示的平面区域即可行域如图所示的△ABC.

令Z=x-3y,则Z表示x-3y-z=0在y轴上的截距的相反数,
由图可知,当直线经过点C(4,-2)时Z最大,最大值为Z=4-3×(-2)=10;
故选:A.

点评 本题主要考查了抽象函数的函数的单调性与函数的奇偶性的综合应用,不等式表示平面区域的确定,利用线性规划求解目标函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)对任意x∈R都有f(x+2)=-f(x),当x∈(0,1]时,f(x)=2x,则f(2016)-f(2015)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足Sn=n2(n∈N*).
(1)求数列{an}通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,4),若$\overrightarrow a$与$\overrightarrow a$+λ$\overrightarrow b$夹角为锐角,则实数λ的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.到“北上广”创业是很多大学生的梦想,从某大学随机抽查了100人进行了问卷调查,得到了如下2×2列联表:
想到“北上广”创业不想到“北上广”创业合计
男性10
女性20
合计100
己知在这100人中随机抽取1人,抽到想到“北上广”创业的概率是$\frac{3}{5}$.
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下,认为大学生想到“北上广”创业与性别有关?并说明你的理由;
(3)经进一步调查发现,在想到“北上广”创业的20名女大学生中,有5人想到“广州”创业.若从想到“北上广”创业的20名女大学生中任选3人,求在选出的3人中少有2人想到“广州”创业的概率.
下面的临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式ax2-(a+2)x+2<0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是某算法的程序框图,若实数x∈(-1,4),则输出的数值不小于30的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{7}{30}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=$\sqrt{7}$,且向量$\overrightarrow{m}$=(3,sinB)与向量$\overrightarrow{n}$=(2,sinC)共线,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数y=sin(2x-$\frac{π}{4}$)的图象向左平移$\frac{π}{2}$个单位长度,所得图象对应的函数(  )
A.在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减B.在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上单调递增
C.在区间[-$\frac{π}{8}$,$\frac{3π}{8}$]上单调递减D.在区间[-$\frac{π}{8}$,$\frac{3π}{8}$]上单调递增

查看答案和解析>>

同步练习册答案