精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:>0.

【答案】见解析

【解析】(1)f(x)的定义域为(0,+∞),

当λ=0时,f(x)=ln x-x+1.

则f′(x)=-1,令f′(x)=0,解得x=1.

当0<x<1时,f′(x)>0,f(x)在(0,1)上是增函数;

当x>1时,f′(x)<0,f(x)在(1,+∞)上是减函数.

故f(x)在x=1处取得最大值f(1)=0.

(2)证明:由题可得,f′(x)=λln x+-1.

由题设条件,得f′(1)=1,即λ=1.

f(x)=(x+1)ln x-x+1.

由(1)知,ln x-x+1<0(x>0,且x≠1).

当0<x<1时,f(x)=(x+1)ln x-x+1=xln x+(ln x-x+1)<0,

>0.

当x>1时,f(x)=ln x+(xln x-x+1)=ln x-x>0,>0.

综上可知,>0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届河北省衡水中学高三上学期六调】已知函数,其中均为实数,为自然对数的底数.

(1)求函数的极值;

(2)设,若对任意的恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为

I)求椭圆C的方程;

II)已知经过点F的动直线与椭圆C交于不同的两点AB,点M坐标为),证明: 为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间四边形ABCD中,ABCDABCD成30°角,EF分别为BCAD的中点,求EFAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届陕西省西安市铁一中学高三上学期第五次模拟考试数学(文)】已知向量,且函数.

(Ⅰ)当函数f(x)上的最大值为3时,求a的值;

(Ⅱ)在(Ⅰ)的条件下,若对任意的,函数y=f(x)的图像与直线y=-1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)(0,b]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(-x2+x-1)ex,其中e是自然对数的底数.

(1)求曲线f(x)在点(1,f(1))处的切线;

(2)若方程f(x)=x3x2+m有3个不同的根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017兰州高考模拟.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).

(1)请根据题意,将2×2列联表补充完整;

优秀

非优秀

总计

男生

女生

总计

50

(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?

附: ,其中.

参考数据

≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;

>2.706时,有90%的把握判定变量A,B有关联;

>3.841时,有95%的把握判定变量A,B有关联;

>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

同步练习册答案