ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
2
2
£¬ÔÚÍÖÔ²EÉÏ´æÔÚA£¬BÁ½µã¹ØÓÚÖ±Ïßl£ºy=x+1¶Ô³Æ£®
£¨¢ñ£©ÏÖ¸ø³öÏÂÁÐÈý¸öÌõ¼þ£º¢ÙÖ±ÏßABÇ¡ºÃ¾­¹ýÍÖÔ²EµÄÒ»¸ö½¹µã£»¢ÚÍÖÔ²EµÄÓÒ½¹µãFµ½Ö±ÏßlµÄ¾àÀëΪ2
2
£»¢ÛÍÖÔ²EµÄ×ó¡¢ÓÒ½¹µãµ½Ö±ÏßlµÄ¾àÀëÖ®±ÈΪ
1
2
£®
ÊÔ´ÓÖÐÑ¡ÔñÒ»¸öÌõ¼þÒÔÈ·¶¨ÍÖÔ²E£¬²¢Çó³öËüµÄ·½³Ì£»£¨×¢£ºÖ»ÐèÑ¡ÔñÒ»¸ö·½°¸´ðÌ⣬Èç¹ûÓöàÖÖ·½°¸´ðÌ⣬Ôò°´µÚÒ»ÖÖ·½°¸¸ø·Ö£©
£¨¢ò£©ÈôÒÔABΪֱ¾¶µÄԲǡºÃ¾­¹ýÍÖÔ²EµÄÉ϶¥µãS£¬ÇóbµÄÖµ£®
·ÖÎö£º£¨¢ñ£©Ñ¡ÔñÌõ¼þ¢ÚÔËËãÁ¿Ð¡Ò»Ð©£¬ÓÉÍÖÔ²EµÄÓÒ½¹µãFµ½Ö±ÏßlµÄ¾àÀëΪ2
2
£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉµÃcµÄÖµ£¬ÔÙÓÉÀëÐÄÂÊe=
2
2
£¬¼´¿ÉÇóµÃaÖµ£¬×îºóÓÉÍÖÔ²a2=b2+c2£¬ÇóµÄbÖµ¼´¿ÉµÃÍÖÔ²·½³Ì
£¨¢ò£©ÏÈÓÉÀëÐÄÂÊe=
2
2
£¬µÃa2=2b2£¬½«ÍÖÔ²·½³Ì»¯Îª
x2
2b2
+
y2
b2
=1
£¬ÔÙÓÉÍÖÔ²EÉÏ´æÔÚA£¬BÁ½µã¹ØÓÚÖ±Ïßl£ºy=x+1¶Ô³Æ£¬ÖªABµÄÖе㣨
x1+x2
2
£¬
y1+y2
2
£©ÔÚÖ±Ïߣºy=x+1ÉÏ£¬ÁªÁ¢Ö±ÏßABºÍÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÁз½³Ì¿ÉµÃmµÄÖµ£¬×îºóÀûÓÃÒÔABΪֱ¾¶µÄԲǡºÃ¾­¹ýÍÖÔ²EµÄÉ϶¥µãS£¨0£¬b£©£¬£¬¼´AS¡ÍBS£¬¼´
AS
BS
=0£¬ÀûÓÃΤ´ï¶¨ÀíÁз½³Ì¼´¿ÉµÃbµÄÖµ
½â´ð£º½â£º£¨¢ñ£©Ñ¡ÔñÌõ¼þ¢Ú£¬¡ßÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
2
2
£¬
¡à
c
a
=
2
2
£¬ÍÖÔ²µÄÓÒ½¹µã×ø±êΪ£¨c£¬0£©
¡ßÓÒ½¹µãFµ½Ö±ÏßlµÄ¾àÀëΪ2
2
£¬
¡à
|c+1|
2
=2
2
£¬
¡àc=3£¬a=3
2

¡ßa2=b2+c2£¬
¡àb2=9
¡àÍÖÔ²EµÄ·½³ÌΪ
x2
18
+
y2
9
=1

£¨¢ò£©¡ßÀëÐÄÂÊe=
2
2

¡àa2=2b2
¡ßA£¬BÁ½µã¹ØÓÚÖ±Ïßl£ºy=x+1¶Ô³Æ£¬
¡àÖ±ÏßABµÄбÂÊΪ-1£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=-x+m£¬´úÈëÍÖÔ²·½³Ì
x2
2b2
+
y2
b2
=1
µÃ£º£¨3b2£©x2-4mb2x+2b2m2-2b4=0
¡à¡÷£¾0ʱ£¬x1+x2=
4m
3
£¬x1x2=
2 (m2-b2)
3

ÒÀÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡ßÍÖÔ²EÉÏ´æÔÚA£¬BÁ½µã¹ØÓÚÖ±Ïßl£ºy=x+1¶Ô³Æ£¬
¡àABµÄÖе㣨
x1+x2
2
£¬
y1+y2
2
£©ÔÚÖ±Ïߣºy=x+1ÉÏ
¡ß
x1+x2
2
=
2m
3
£¬
y1+y2
2
=
-(x1+x2)+2m
2
=
m
3
£¬
¡àm=-3
¡ßÍÖÔ²EµÄÉ϶¥µãS£¨0£¬b£©£¬ÒÔABΪֱ¾¶µÄԲǡºÃ¾­¹ýÍÖÔ²EµÄÉ϶¥µãS£¬¼´AS¡ÍBS£¬¼´
AS
BS
=0£¬¼´£¨-x1£¬b-y1£©•£¨-x2£¬b-y2£©=0
¡àx1x2+£¨b-y1£©£¨b-y2£©=x1x2+y1y2-b£¨y1+y2£©+b2=2x1x2+£¨b+3£©£¨x1+x2£©+9+6b+b2=0
¡à
4(9-b2)
3
-4£¨b+3£©£©+9+6b+b2=0£¬½âµÃb=9£¬b=-3£¨ÉáÈ¥£©
¡àb=9
µãÆÀ£º±¾Ì⿼²ìÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬½âÌâʱҪÈÏÕæÌå»áΤ´ï¶¨ÀíÔÚ½â¾öÖ±ÏßÓëԲ׶ÇúÏßÎÊÌâÖеÄÖØÒªÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬½¹µãΪF1¡¢F2£¬Ë«ÇúÏßG£ºx2-y2=m£¨m£¾0£©µÄ¶¥µãÊǸÃÍÖÔ²µÄ½¹µã£¬ÉèPÊÇË«ÇúÏßGÉÏÒìÓÚ¶¥µãµÄÈÎÒ»µã£¬Ö±ÏßPF1¡¢PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA¡¢BºÍC¡¢D£¬ÒÑÖªÈý½ÇÐÎABF2µÄÖܳ¤µÈÓÚ8
2
£¬ÍÖÔ²Ëĸö¶¥µã×é³ÉµÄÁâÐεÄÃæ»ýΪ8
2
£®
£¨1£©ÇóÍÖÔ²EÓëË«ÇúÏßGµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßPF1¡¢PF2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬Ì½Çók1ºÍk2µÄ¹Øϵ£»
£¨3£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ|AB|+|CD|=¦Ë|AB|•|CD|ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬ÒÔF1£¨-c£¬0£©ÎªÔ²ÐÄ£¬ÒÔa-cΪ°ë¾¶×÷Ô²F1£¬¹ýµãB2£¨0£¬b£©×÷Ô²F1µÄÁ½ÌõÇÐÏߣ¬ÉèÇеãΪM¡¢N£®
£¨1£©Èô¹ýÁ½¸öÇеãM¡¢NµÄÖ±ÏßÇ¡ºÃ¾­¹ýµãB1£¨0£¬-b£©Ê±£¬Çó´ËÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÈôÖ±ÏßMNµÄбÂÊΪ-1£¬ÇÒÔ­µãµ½Ö±ÏßMNµÄ¾àÀëΪ4£¨
2
-1£©£¬Çó´ËʱµÄÍÖÔ²·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚÍÖÔ²E£¬Ê¹µÃÖ±ÏßMNµÄбÂÊkÔÚÇø¼ä£¨-
2
2
£¬-
3
3
£©ÄÚÈ¡Öµ£¿Èô´æÔÚ£¬Çó³öÍÖÔ²EµÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
3
=1
£¨a£¾
3
£©µÄÀëÐÄÂÊe=
1
2
£®Ö±Ïßx=t£¨t£¾0£©ÓëÇúÏß E½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¬ÒÔÏ߶ÎMN Ϊֱ¾¶×÷Ô² C£¬Ô²ÐÄΪ C£®
 £¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
 £¨2£©ÈôÔ²CÓëyÖáÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬Çó¡÷ABCµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·ðɽ¶þÄ££©ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÒ»¸ö½»µãΪF1(-
3
£¬0)
£¬¶øÇÒ¹ýµãH(
3
£¬
1
2
)
£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²EµÄÉÏ϶¥µã·Ö±ðΪA1£¬A2£¬PÊÇÍÖÔ²ÉÏÒìÓÚA1£¬A2µÄÈÎÒ»µã£¬Ö±ÏßPA1£¬PA2·Ö±ð½»xÖáÓÚµãN£¬M£¬ÈôÖ±ÏßOTÓë¹ýµãM£¬NµÄÔ²GÏàÇУ¬ÇеãΪT£®Ö¤Ã÷£ºÏ߶ÎOTµÄ³¤Îª¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
a2
+y2=1
£¨a£¾1£©µÄÀëÐÄÂÊe=
3
2
£¬Ö±Ïßx=2t£¨t£¾0£©ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÒÔÏ߶ÎMNΪֱ¾¶×÷Ô²C£¬Ô²ÐÄΪC
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©µ±Ô²CÓëyÖáÏàÇеÄʱºò£¬ÇótµÄÖµ£»
£¨¢ó£©ÈôOΪ×ø±êÔ­µã£¬Çó¡÷OMNÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸