精英家教网 > 高中数学 > 题目详情
9.若θ∈($\frac{π}{2}$,$\frac{5π}{4}$).则sinθ的取值范围是(-$\frac{\sqrt{2}}{2}$,1),cosθ的取值范围是(-1,0).

分析 由条件利用正弦函数、余弦函数的定义域和值域,求得sinθ的取值范围、cosθ的取值范围.

解答 解:由于θ∈($\frac{π}{2}$,$\frac{5π}{4}$),则sinθ∈(-$\frac{\sqrt{2}}{2}$,1),cosθ∈(-1,0),
故答案为:(-$\frac{\sqrt{2}}{2}$,1)、(-1,0).

点评 本题主要考查正弦函数、余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.定义函数:G(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{1,x<0}\end{array}\right.$,下列结论正确的②③
①G(a)G(b)=G(a+b);
②G(a)+G(b)≥2G($\frac{a+b}{2}$);
③G(a+b)≥1+a+b;
④G(ab)=G(a)G(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的两根分别为x1,x2且-1<x1<1<x2<2,则$\frac{b}{a}$的取值范围是(-$\frac{5}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若任意的实数a≤-1,恒有-a•2x+x+3a≥0成立.则实数x的取值范围为(log23,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{ax+b}{{x}^{2}+1}$(x∈R,且a≠0)的值域为[-1,4],则a,b的值为(  )
A.a=4,b=3B.a=-4,b=3C.a=±4,b=3D.a=4,b=±3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{\sqrt{x}-1}{x+1}$+$\frac{1}{2}$的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{tan(-15{0}^{°})cos(-21{0}^{°})cos(-42{0}^{°})tan(-60{0}^{°})}{sin(-105{0}^{°})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x+1)为奇函数,当x>1时,f(x)=-5x+3x.则f(-1)的值为 (  )
A.0B.2C.-12D.12

查看答案和解析>>

同步练习册答案