精英家教网 > 高中数学 > 题目详情

【题目】为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟跳绳次数的测试,将数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,且第一小组的频数为5.

(1)求第四小组的频率;

(2)求参加这次测试的学生的人数;

(3)若一分钟跳绳次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率.

【答案】(1) ; (2)50人; (3) .

【解析】

试题分析:(1)根据各组的总累积频率为1,由从左到右前三个小组的频率分别为010304,可得第四小组的频率;(2)根据频率=,结合第一小组的频数为5,频率为01,可得参加这次测试的学生人数;(3)次数在75次以上,即为后三组,累加后三组的频数,除以总人数后,可估算出该年级学生跳绳测试的达标率

试题解析:解:(1)由累计频率为1知,第四小组的频率为1-01-03-04=02

2)设参加这次测试的学生有x人,则01x=5,所以x =50,即参加测试的共50人;

3)达标人数为50*03+04+02=45,达标率为45/50=90%,所以估计该年级的学生跳绳测试的达标率为90%

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间(t),结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间t(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台举办青年歌手大奖赛,有十名评委打分,已知甲、乙两名选手演唱后的得分如茎叶图如图所示.

(1)从统计学的角度,你认为甲与乙比较,演唱水平怎样?

(2)现场有三名点评嘉宾A,B,C,每位选手可以从中选两位接受其指导,若选手选每位点评嘉宾的可能性相等,求甲、乙两名选手选择的点评嘉宾恰有一人重复的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行了分析研究,分别记录了2016年12月1日至12月5日每天的昼夜温差以及实验室100颗种子中的发芽数,得到的数据如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的三组数据求线性回归方程,再对被选取的两组数据进行检验.

(1)求选取的两组数据恰好是不相邻的两天数据的概率.

(2)若选取的是12月1日和12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程.

(3)由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的,据此说明(2)中所得线性回归方程是否可靠?并估计当温差为9 ℃时,100颗种子中的发芽数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.

(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:

3

4

5

6

2.5

3

4

4.5

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①函数y= 为奇函数;
②y=2 的值域是(1,+∞)
③函数y= 在定义域内是减函数;
④若函数f(2x)的定义域为[1,2],则函数y=f( )定义域为[4,8]
其中正确命题的序号是 . (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an}、{bn},Sn为数列{an}的前n项和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案