精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1)

(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
)(x∈[0,
π
4
])
的取值范围.
分析:(1)由两向量的坐标,以及两向量平行列出关系式,整理求出tanx的值,所求式子变形后利用同角三角函数间的基本关系变形,将tanx的值代入计算即可求出值;
(2)利用平面向量的数量积运算法则确定出f(x),由a,b及sinB的值,利用正弦定理求出sinA的值,确定出A的度数,代入所求式子,根据x的范围求出这个角的范围,进而求出正弦函数的值域,即可确定出所求式子的范围.
解答:解:(1)∵
a
=(sinx,
3
4
),
b
=(cosx,-1),
a
b

∴-sinx=
3
4
cosx,即tanx=-
3
4

则cos2x-sin2x=cos2x-2sinxcosx=
cos2x-2sinxcosx
cos2x+sin2x
=
1-2tanx
1+tan2x
=
1+2×
3
4
1+
9
16
=
8
5

(2)f(x)=2(
a
+
b
)•
b
=2(sinxcosx+cos2x+
1
4
)=sin2x+cos2x+
3
2
=
2
sin(2x+
π
4
)+
3
2

∵a=
3
,b=2,sinB=
6
3

∴由正弦定理
a
sinA
=
b
sinB
得:sinA=
asinB
b
=
3
×
6
3
2
=
2
2

∵a<b,∴A<B,
∴A=
π
4

∴原式=
2
sin(2x+
π
4
)-
1
2

∵x∈[0,
π
4
],∴2x+
π
4
∈[
π
4
4
],
∴1≤
2
sin(2x+
π
4
)≤
2

1
2
2
sin(2x+
π
4
)-
1
2
2
-
1
2
.即所求式子的范围为[
1
2
2
-
1
2
].
点评:此题考查了余弦定理,数量积的坐标表达式,正弦函数的定义域与值域,以及三角函数的恒等变换,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案