精英家教网 > 高中数学 > 题目详情
已知圆C1:x2+y2-2x-4y+m=0,
(1)求实数m的取值范围;
(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值.
分析:(1)把x2+y2-2x-4y+m=0变成圆的标准方程根据半径大于0得到m的取值范围;
(2)先把直线与圆的方程联立消去y,因为OM⊥ON得到x1x2+y1y2=0,然后利用根于系数的关系求出m即可.
解答:解:(1)配方得(x-1)2+(y-2)2=5-m,所以5-m>0,即m<5,
(2)设M(x1,y1)、N(x2,y2),∵OM⊥ON,所以x1x2+y1y2=0,
x+2y-4=0
x2+y2-2x-4y+m=0
得5x2-16x+m+8=0,
因为直线与圆相交于M、N两点,所以△=162-20(m+8)>0,即m<
24
5

所以x1+x2=
16
5
,x1x2=
m+8
5

y1y2=
1
4
(4-x1)(4-x2)=4-(x1+x2)+
1
4
x1x2=
4
5
(m+9),
代入解得:m=-
44
5
满足m<5且m<
24
5
,所以m=-
44
5
点评:此题是一道直线与圆的方程的综合题,主要考查学生对圆标准方程的认识,会利用根与系数的关系解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=2,直线l与圆C1相切于点A(1,1);圆C2的圆心在直线x+y=0上,且圆C2过坐标原点.
(1)求直线l的方程;
(2)若圆C2被直线l截得的弦长为8,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=10与圆C2x2+y2+2x+2y-14=0
(1)求证:圆C1与圆C2相交;
(2)求两圆公共弦所在直线的方程;
(3)求经过两圆交点,且圆心在直线x+y-6=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+(y+5)2=5,设圆C2为圆C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为
2
?荐存在,求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,已知圆C1x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A、B,定点M坐标为(0,-1),直线MA,MB分别与C1相交于点D、E.
(1)求证:MA⊥MB.
(2)记△MAB,△MDE的面积分别为S1、S2,若
S1S2
,求λ的取值范围.

查看答案和解析>>

同步练习册答案