精英家教网 > 高中数学 > 题目详情
16.若点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,则λ的取值范围是{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.

分析 直接把点代入圆的方程的左侧,表达式大于0,并且圆的方程表示圆,即可求出m的范围.

解答 解:因为点P(1,1)在圆x2+y2+(λ-1)x+2λy+λ=0外,
所以1+1+(λ-1)+2λ+λ>0,解得$λ>-\frac{1}{4}$,
(λ-1)2+4λ2-4λ>0,解得λ>1或$λ<\frac{1}{5}$,
综上$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1
故答案为:{λ|$\frac{1}{5}>λ>-\frac{1}{4}$或λ>1}.

点评 本题考查点与圆的位置关系,注意圆的方程表示圆的条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A是锐角,B是钝角,且cos(A-B)=$\frac{3}{5}$,求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{{2^{2x}}}}{{2+{2^{2x}}}}$
(1)求$f({\frac{1}{2}})$;
(2)求f(x)+f(1-x)的值;
(3)求$f({\frac{1}{100}})+f({\frac{2}{100}})+f({\frac{3}{100}})+…+f({\frac{98}{100}})+f({\frac{99}{100}})的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆中心在原点,对称轴为坐标轴,离心率为$\frac{1}{2}$,长轴长为8,求该椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件:$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则z=x+y的最大值是(  )
A.$\frac{22}{5}$B.2C.$\frac{27}{5}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
分组频数频率
(0,30]30.03
(30,60]30.03
(60,90]370.37
(90,120]mn
(120,150]150.15
合计MN
(Ⅰ)若全校参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各组函数为同一函数的是(  )
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=$\sqrt{x}$•$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}+x}$
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x≤0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=$lo{g_{\frac{1}{2}}}$(3x2-2x+1),求使f(x)<-1的x取值范围是(-∞,-$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某社团组织50名志愿者参加社会公益活动,帮助那些需要帮助的人,各位志愿者根据各自的实际情况,选择了两个不同的活动项目,相关的数据如下表所示:
宣传慰问义工总计
男性志愿者111627
女性志愿者15823
总计262450
(1)先用分层抽样的方法在做义工的志愿者中随机抽取6名志愿者,再从这6名志愿者中又随机抽取2名志愿者,设抽取的2名志愿者中女性人数为ξ,求ξ的数学期望.
(2)如果“宣传慰问”与“做义工”是两个分类变量,那么你有多大把握认为选择做宣传慰问与做义工是与性别有关系的?
附:2×2列联表随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.P(K2≥k)与k对应值表:
参考数据P(K2≥k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879

查看答案和解析>>

同步练习册答案