精英家教网 > 高中数学 > 题目详情

【题目】现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:

全月应纳税所得额

税率

不超过1500元的部分

3%

超过1500元至4500元的部分

10%

超过4500元至9000元的部分

20%

超过9000元至35000元的部分

25%

……

例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).

(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;

(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;

(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)

【答案】(1) (元).(2) .(3) 丙的月工资收入为11275元.

【解析】

(Ⅰ)依据所得税税率表计算即可.

(Ⅱ)依据税率表分段计算应纳个人所得税.

(Ⅲ)根据(Ⅱ)计算工资收入.

(Ⅰ)解:甲的月工资收入为元,其应纳的个人所得税为(元).

(Ⅱ)解:当时,乙应纳个人所得税元.

时,乙应纳个人所得税元.

时,乙应纳个人所得税

元.

时,乙应纳个人所得税

元.

所以 .

(Ⅲ)丙的月工资收入为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点关于原点的对称点为为其右焦点,若,设,且,则该椭圆的离心率的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从地到地有两条道路可以到达,走道路①准点到达的概率为,不准点到达的概率为;走道路②准点到达的概率为,不准点到达的概率为.若甲乙两车走道路①,丙车由于其他原因走道路②,且三辆车是否准点到达相互之间没有影响.

1)若三辆车中恰有一辆车没有准点到达的概率为,求走道路②准点到达的概率

2)在(1)的条件下,求三辆车中准点到达车辆的辆数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:

表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:

如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在不同的实数x1x2x3,使得fx1=fx2=fx3),则x1x2x3的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,再把图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象,则关于的图象,下列结论不正确的是

A. 周期为 B. 关于点对称

C. 单调递增 D. 单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率是,A、B分别为椭圆的左顶点、上顶点,原点OAB所在直线的距离为.

I)求椭圆C的方程;

(Ⅱ)已知直线与椭圆相交于不同的两点M,N(均不是长轴的端点),,垂足为H,且,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。他提出了著名的拿破仑定理:以三角形各边为边分别向外(内)侧作等边三角形,则它们的中心构成一个等边三角形。如图所示,以等边的三条边为边,向外作个正三角形,取它们的中心,顺次连接,得到,图中阴影部分为的公共部分。若往中投掷一点,则该点落在阴影部分内的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案