精英家教网 > 高中数学 > 题目详情

【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,汽车4S店记录了100辆该品牌三种类型汽车的维修情况,整理得下表:

车型

A

B

C

频数

20

40

40

假设该店采用分层抽样的方法从上述维修的100辆该品牌三种类型汽车中随机取10辆进行问卷回访.

1)求A型、B型、C型各车型汽车抽取的数目;

2)维修结束后这100辆汽车的司机采用“100分制”打分的方式表示对4S店的满意度,按照大于等于80为优秀,小于80为合格,得到如下列联表:

优秀

合格

合计

男司机

10

38

48

女司机

25

27

52

合计

35

65

100

问能否在犯错误概率不超过0.01的前提下认为司机对4S店满意度与性别有关系?请说明原因.

(参考公式:

附表:

0.100

0.050

0.010

0.001

K

2.706

3.841

6.635

10.828

【答案】(1) 分别为224;(2) 能在犯错误概率不超过0.01的前提下,认为司机对4S店满意度与性别有关系.

【解析】

1)确定A型,B型,C型的比例,即可求A型,B型,C型各车型汽车的数目;
2)由已知列联表中的数据求得观测值,结合临界值表可得结论.

解:(1ABC型汽车抽取数目分别为

2)根据题意,

所以能在犯错误概率不超过0.01的前提下,认为司机对4S店满意度与性别有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将四个不同的小球放入三个分别标有123号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有( .

A.B.C.D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】猜想是指对于每一个正整数,若为偶数,则让它变成;若为奇数,则让它变成.如此循环,最终都会变成,若数字按照以上的规则进行变换,则变换次数为偶数的频率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由矩形组成的一个平面图形,其中,将其沿折起使得重合,连接如图②.

1)证明:平面平面

2)若为线段中点,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线

(Ⅰ)求的方程;

(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,内角的对边为三角形外接圆的半径,证明:

1

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:得到频率分布直方图如图所示.用频率估计概率.

房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):

房价区间

佣金收入

1

2

3

4

5

6

1)求的值;

2)求房产销售公司卖出一套房的平均佣金;

3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).

该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计/span>计算:

月总佣金

不超过100万元的部分

超过100万元至200万元的部分

超过200万元至300万元的部分

超过300万元的部分

销售成本占

佣金比例

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是半径为2的球面上的点,,点上的射影为,则三棱锥体积的最大值是( .

A.B.C.D.

查看答案和解析>>

同步练习册答案