精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆C: 的离心率 ,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

【答案】
(1)解:由 得a2=3b2,椭圆方程为x2+3y2=3b2

椭圆上的点到点Q的距离 =

①当﹣b≤﹣1时,即b≥1, 得b=1

②当﹣b>﹣1时,即b<1, 得b=1(舍)

∴b=1

∴椭圆方程为


(2)解:假设M(m,n)存在,则有m2+n2>1

∵|AB|= ,点O到直线l距离

=

∵m2+n2>1

∴0< <1,∴

当且仅当 ,即m2+n2=2>1时,SAOB取最大值

又∵

解得:

所以点M的坐标为 ,△AOB的面积为


【解析】(1)由 得a2=3b2 , 椭圆方程为x2+3y2=3b2 , 求出椭圆上的点到点Q的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M的坐标.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:

喜欢户外运动

不喜欢户外运动

合计

男性

5

女性

10

合计

50

已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(3)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)ex+(a﹣1)x+a,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x),证明:当a>2时,函数g(x)在(0,+∞)上仅有一个零点;
(3)若对任意的x∈[0,2],恒有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.

组号

分组

频数

频率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?

(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列的前项和为,若,且成等比数列.

(1)求的通项公式;

(2)设,记数列的前项和为,求

查看答案和解析>>

同步练习册答案