精英家教网 > 高中数学 > 题目详情
如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则(   ).
A.50B.35C.32D.41
B
解:不妨设P点是椭圆上的任意点则由椭圆的第二定义可得:|PF| a2 c - x =" c" a 又a=5,b=4,c=" a2-" b2 =3故|PF|="5-3" 5 x
∵把椭圆x2 25 +y2 16 =1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点
∴p4点为椭圆与Y轴正半轴的交点且P1,P2,P3与P5,P6,P7分别关于Y轴对称
∴不妨设p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1)
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-3 5 x1)+(5-3 5 x2)+(5-3 5 x3)+(5-3 5 ×0)+ (5+3 5 x3)+(5+3 5 x2)+(5+3 5 x1)
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)已知椭圆的右焦点为为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)
P为椭圆上任意一点,为左、右焦点,如图所示.
(1)若的中点为,求证:
(2)若∠,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标,若不存在,试说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的点,以为圆心的圆与轴相切于椭
圆的焦点,圆轴相交于两点.若为锐角三角形,则椭圆的离心率
的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为
(1)求椭圆的方程;
(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率,右焦点到直线的距离为,过的直线交椭圆于两点.(Ⅰ) 求椭圆的方程;(Ⅱ) 若直线轴于,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若,则___.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分)过点的椭圆)的离心率为,椭圆与轴的交于两点),),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点
(I)当直线过椭圆右交点时,求线段的长;
(II)当点异于两点时,求证:为定值.

查看答案和解析>>

同步练习册答案