精英家教网 > 高中数学 > 题目详情

【题目】国家质量监督检验检疫局于2004531日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人血液中的酒精含量大于或等于20毫克/百毫升、小于80毫克/百毫升的行为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝一瓶啤酒后酒精在人体血液内的变化规律散点图如下:

该函数模型如下,

.

根据上述条件,回答以下问题:

1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?

2)试计算喝1瓶啤酒后多少小时才可以驾车?(时间以整小时计)(参考数据:

【答案】1)喝一瓶啤酒后1.5小时血液中的酒精达到最大值,最大值是44.42毫克/百毫升;(2)喝一瓶啤酒后6小时才可以驾车

【解析】

(1)由图可知,当函数取得最大值时,,此时时,取得最大值,即可求得.

(2)由题意知当车辆驾驶人员血液中的酒精小于20毫克/100毫升可以驾车,此时,解不等式,两边取对数,即可求出..

1)由图可知,当函数取得最大值时,.

此时.

时,即时,函数取得最大值为

故喝一瓶啤酒后1.5小时血液中的酒精达到最大值,最大值是44.42毫克/百毫升,

2)由题意知当车辆驾驶人员血液中的酒精小于20毫克/100毫升可以驾车,此时

,得

两边取自然对数得

故喝一瓶啤酒后6小时才可以驾车.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校医务室欲研究昼夜温差大小与高三患感冒人数多少之间的关系,他们统计了20199月至20201月每月8号的昼夜温差情况与高三因患感冒而就诊的人数,得到如下资料:

日期

201998

2019108

2019118

2019128

202018

昼夜温差

5

8

12

13

16

就诊人数

10

16

26

30

35

该医务室确定的研究方案是先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.假设选取的是201998日与202018日的2组数据.

1)求就诊人数关于昼夜温差的线性回归方程 (结果精确到0.01

2)若由(1)中所求的线性回归方程得到的估计数据与所选出的检验数据的误差均不超过3人,则认为得到的线性回归方程是理想的,试问该医务室所得线性回归方程是否理想?

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为).

(Ⅰ)设为参数,若,求直线的参数方程;

(Ⅱ)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.

(1)分别计算这10名同学中,男女生测试的平均成绩;

(2)若这10名同学中,男生和女生的国学素养测试成绩的标准差分别为S1S2,试比较S1S2的大小(不必计算,只需直接写出结果);

(3)规定成绩大于等于75分为优良,从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,其导数为

1)当时,求的单调区间;

2)函数是否存在零点?说明理由;

3)设处取得最小值,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.右图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为高消费群” .

(1)求m,n的值,并求这100名学生月消费金额的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为高消费群与性别有关?

高消费群

非高消费群

合计

10

50

合计

(参考公式:,其中

P()

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 A 、B 、Ai 为集合.

(1)满足 A B ={a , b}的集合有序对(A , B)有多少对 ? 为什么 ?

(2)满足 A B ={a1 , a2 , …, }的集合有序对(A , B)有多少对? 为什么?

(3)满足的集合有序组有多少组? 为什么 ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,两两垂直,平面平面,平面平面.

1)证明:四边形是正方形;

2)判断点是否共面,并说明理由.

查看答案和解析>>

同步练习册答案