精英家教网 > 高中数学 > 题目详情

已知sinθ+sin2θ=1,求3cos2θ+cos4θ-2sinθ+1的值.

解:由题意sinθ+sin2θ=1;
可以得到:sinθ=1-sin2θ=cos2θ,
所以原式=3sinθ+sin2θ-2sinθ+1=sinθ+1-cos2θ+1=sinθ-sinθ+2=2.
分析:首先分析题目给的已知条件sinθ+sin2θ=1,可以得到sinθ=cos2θ,然后代入3cos2θ+cos4θ-2sinθ+1直接求得结果.
点评:此题主要考查同角三角函数的基本关系的应用,应用到公式sin2θ+cos2θ=1,计算量小,属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+sinβ=1,cosα+cosβ=0,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinβ=sinαcos(α+β)(α,β都是锐角),求证:
sin2α3-cos2α
=tanβ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+sinβ=
12
13
,cosα+cosβ=
5
13
,则cos(α-β)=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求cos(β-γ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
1
5
,则下列各式中值为
1
5
的是(  )

查看答案和解析>>

同步练习册答案