【题目】如图所示,ABCDA1B1C1D1是正方体,画出图中阴影部分的平面与平面ABCD的交线,并给出证明.
【答案】见解析
【解析】试题分析:过点E作EN⊥CD于点N,连接NB并延长,交EF的延长线于点M,连接AM,则直线AM为所求。证明时可证明点A,M同时在平面AEF和平面ABCD上即可。
试题解析:
如图,过点E作EN⊥CD于点N,
连接NB并延长,交EF的延长线于点M,连接AM。
则直线AM即为图中阴影部分的平面与平面ABCD的交线。
证明如下:
因为直线EN∥BF,
所以B,N,E,F四点共面,
因此EF与BN相交,交点为M,
因为M∈EF,且M∈NB,
因为EF平面AEF,NB平面ABCD,
所以M是平面ABCD与平面AEF的公共点,
又因为点A是平面AEF和平面ABCD的公共点,
所以AM为这两平面的交线.
科目:高中数学 来源: 题型:
【题目】微信是现代生活进行信息交流的重要工具,若要调查某公司使用微信的员工经常使用微信与年龄的关系,并规定每天使用微信时间在一小时以上为经常使用微信。据统计,该公司200名员工中90%的人使用微信,其中不经常使用微信的有60人,其余经常使用微信。若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的中75%是青年人.经常使用微信的员工中,有80人是青年人.
(1)请完成如下联列表,
青年人 | 中年人 | 合计 | |
经常使用微信 | |||
不经常使用微信 | |||
合计 |
(2)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)现采用分层抽样的方法从“经常使用微信的人”中抽取6人,从已抽取的这6人中任选2人,求“选出的2人均为青年人”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有____________(把所有正确的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的是( )
A. 如果平面外的直线不平行于平面,则平面内不存在与平行的直线
B. 如果平面平面,平面平面, ,那么直线平面
C. 如果平面平面,那么平面内所有直线都垂直于平面
D. 一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“菊花”型烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂.通过研究,发现该型烟花爆裂时距地面的高度(单位:米)与时间(单位:秒)存在函数关系,并得到相关数据如表:
时间 | 1 | ||
高度 |
(1)根据表中数据,从下列函数中选取一个函数描述该型烟花爆裂时距地面的高度与时间的变化关系: , , ,确定此函数解析式并简单说明理由;
(2)利用你选取的函数,判断烟花爆裂的最佳时刻,并求此时烟花距地面的高度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且的离心率为.
(1)求的方程;
(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com