精英家教网 > 高中数学 > 题目详情

⊙O1的半径是2 cm,⊙O2的半径是5 cm,圆心距是4 cm,则两圆的位置关

系为

[  ]

A.相交

B.外切

C.外离

D.内切

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网半径为R的球O的截面BCD把球面面积分为两部分,截面圆O1的面积为12π,2OO1=R,BC是截面圆O1的直径,D是圆O1上不同于B,C的一点,CA是球O的一条直径.
①求证:平面ADC⊥平面ABD;
②求三棱锥A-BCD的体积最大值;
③当D分BC的两部分的比BD:DC=1:2时,求二面角B-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、⊙O1与⊙O2的半径分别为1和2,|O1O2|=4,动圆与⊙O1内切而与⊙O2外切,则动圆圆心轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O1和⊙O2交于点C和D,⊙O1上的点P处的切线交⊙O2于A、B点,交直线CD于点E,M是⊙O2上的一点,若PE=2,EA=1,∠AMB=30°,那么⊙O2的半径为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为
CD
CD
DE
DE
的中点,O1
O
1
O2,
O
2
分别为CD,C′D′,DE,D′E′的中点.
(1)证明:
O
1
AO2,B
四点共面;
(2)设G为A A′中点,延长A
O
1
到H′,使得
O
1
H=A
O
1
.证明:B
O
2
⊥平面HBG

查看答案和解析>>

同步练习册答案