【题目】已知是自然对数的底数,函数与的定义域都是.
(1)求函数在点处的切线方程;
(2)求证:函数只有一个零点,且;
(3)用表示,的最小值,设,,若函数在上为增函数,求实数的取值范围.
【答案】(1)(2)见证明(3)
【解析】
(1)利用导数的几何意义求函数在点处的切线方程为.(2)先计算得,所以存在零点,且.再证明在上是减函数,即得证函数只有一个零点,且.(3)由题得,
在为增函数在,恒成立,即在区间上恒成立. 设,只需证明,再利导数求得的最小值,.
(1)∵,
∴切线的斜率,.
∴函数在点处的切线方程为.
(2)证明:∵,,
∴,,,
∴存在零点,且.
∵,
∴当时,;
当时,由得
.
∴在上是减函数.
∴若,,,则.
∴函数只有一个零点,且.
(3)解:,故,
∵函数只有一个零点,
∴,即.
∴.
∴在为增函数在,恒成立.
当时,即在区间上恒成立.
设,只需,
,在单调减,在单调增.
的最小值,.
当时,,由上述得,则在恒成立.
综上述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=15,O为AB上一点,且BO=10,线段OC、OD、MN为表演队列所在位置(M、N分别在线段OD、OC上),△OCD内的点P为领队位置,且P到OC、OD的距离分别为、,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
(1)当d为何值时,P为队列MN的中点;
(2)怎样安排M的位置才能使观赏效果最好?求出此时△OMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 是正方形, 平面. , , , 分别是 , , 的中点.
(1)求证:平面平面.
(2)在线段上确定一点,使平面,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)求函数的对称轴方程;
(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角A,B,C的对边,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以椭圆的离心率为,以其四个顶点为顶点的四边形的面积等于.
1求椭圆的标准方程;
2过原点且斜率不为0的直线与椭圆交于两点,是椭圆的右顶点,直线分别与轴交于点,问:以为直径的圆是否恒过轴上的定点?若恒过轴上的定点,请求出该定点的坐标;若不恒过轴上的定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有4家直营店, , , ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com