精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA||PB|的值.

【答案】
(1)解:曲线C的极坐标方程为ρsin2θ=2cosθ,即为ρ2sin2θ=2ρcosθ,化为普通方程为:y2=2x
(2)解:把直线l的参数方程代入抛物线方程可得:t2+(2﹣2 )t﹣3=0.

∴t1t2=﹣3.

∴|PA||PB|=|t1t2|=3


【解析】(1)曲线C的极坐标方程为ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,利用互化公式可得直角坐标方程.(2)把直线l的参数方程代入抛物线方程可得:t2+(2﹣2 )t﹣3=0.利用根与系数的关系、参数的几何意义即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4xsinα+tanα(0<a<)有且仅有一个零点

(Ⅰ)求sin2a的值;

(Ⅱ)若cos2β+2sin2β=+sinβ, β∈,求β-2α的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若 ,求函数内是偶函数的概率;

2)若 求函数有零点的概率;

3)若 ,求函数在区间上是增函数的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0且a≠1)的图象恒过定点A,若点A在mx+ny+2=0上,其中mn>0,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.

(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

同步练习册答案