精英家教网 > 高中数学 > 题目详情
1.对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)•f(a-x)=1对任意实数x∈R恒成立,则称f(x)为关于a的“倒函数”.已知定义在R上的函数f(x)是关于0和1的“倒函数”,且当x∈[0,1]时,f(x)的取值范围为[1,2],则当x∈[1,2]时,f(x)的取值范围为[$\frac{1}{2}$,1],当x∈[-2016,2016]时,f(x)的取值范围为[$\frac{1}{2}$,2].

分析 根据“倒函数”的定义,建立两个方程关系,根据方程关系判断函数的周期性,利用函数的周期性和函数的关系进行求解即可得到结论.

解答 解:若函数f(x)是关于0和1的“倒函数”,
则f(x)•f(-x)=1,则f(x)≠0,
且f(1+x)•f(1-x)=1,
即f(2+x)•f(-x)=1,
即f(2+x)•f(-x)=1=f(x)•f(-x),
则f(2+x)=f(x),
即函数f(x)是周期为2的周期函数,
若x∈[0,1],则-x∈[-1,0],2-x∈[1,2],此时1≤f(x)≤2
∵f(x)•f(-x)=1,
∴f(-x)=$\frac{1}{f(x)}$∈[$\frac{1}{2}$,1],
∵f(-x)=f(2-x)∈[$\frac{1}{2}$,1],
∴当x∈[1,2]时,f(x)∈[$\frac{1}{2}$,1].
即一个周期内当x∈[0,2]时,f(x)∈[$\frac{1}{2}$,2].
∴当x∈[-2016,2016]时,f(x)∈[$\frac{1}{2}$,2].
故答案为:[$\frac{1}{2}$,1],[$\frac{1}{2}$,2].

点评 本题主要考查抽象函数的应用,根据“倒函数”,的定义建立方程关系判断函数的周期性是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在平行四边形ABCD中,已知AB=4,AD=3,∠DAB=$\frac{π}{3}$,点E,F分别在边AD,BC上,且$\overrightarrow{AD}$=3$\overrightarrow{AE}$,$\overrightarrow{BF}$=2$\overrightarrow{FC}$,则$\overrightarrow{AB}$•$\overrightarrow{EF}$的值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,
(1)求这个椭圆的离心率;
(2)求这个椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x,y∈R+,求证:$\sqrt{{x}^{2}-3x+3}$+$\sqrt{{y}^{2}-3y+3}$+$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$≥$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线y2=4x,F为抛物线焦点,A、B为抛物线上的两点,且∠AFB=60°,M为AB中点,过M作抛物线准线的垂线交准线于点N.求$\frac{|MN|}{|AB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆x2+y2+mx-$\frac{1}{4}$=0与抛物线y=$\frac{1}{4}$x的准线相切,则m=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在空间直角坐标系中有单位正方体ABCD-A1B1C1D1
(1)求直线DD1与平面AB1C所成角的正弦值;
(2)求平面AB1C与平面AB1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.命题p:函数f(x)=lg(ax2+2x+1)的定义域为R;命题q:函数g(x)=$\frac{x+a}{x-2}$在(2,+∞)上是增函数,如果p∨q为真命题,p∧q为假命题,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简:
(1)4sin2α(1-sin2α)+cos22α;
(2)$\frac{1+2cos\frac{α}{2}(sin\frac{α}{2}-cos\frac{α}{2})}{sinα-cosα}$.

查看答案和解析>>

同步练习册答案