精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex(axb)-x2-4x,曲线yf(x)在点(0,f(0))处的切线方程为y=4x+4.

(Ⅰ)求ab的值;

(Ⅱ)讨论f(x)的单调性.

【答案】(1)a=4,b=4;(2)见解析.

【解析】试题分析:(Ⅰ)求导函数,利用导数的几何意义及曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,建立方程,即可求得a,b的值;

Ⅱ)利用导数的正负,可得f(x)的单调性.

试题解析:

(1)f′(x)=ex(axab)-2x-4,

由已知得f(0)=4,f′(0)=4,故b=4,ab=8.

从而a=4,b=4.

由(1)知,f(x)=4ex(x+1)-x2-4x

f′(x)=4ex(x+2)-2x-4=4(x+2)·

f′(x)=0得,x=-ln 2或x=-2.

x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0;当x∈(-2,-ln 2)时,f′(x)<0.

f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.

(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;

(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);

(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;

(ii) 若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的图象向左平移 个单位,得到的函数图象的对称中心与f(x)图象的对称中心重合,则ω的最小值是(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数上单调递增,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x4lnx﹣a(x4﹣1),a∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)f(x)的极小值为φ(a),当a>0时,求证: .(e=2.71828…为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国民生活水平的提高,利用长假旅游的人越来越多,其公司统计了2012到2016年五年间本公司职工每年春节期间外出旅游的家庭数,具体统计数据如表所示:

年份x

2012

2013

2014

2015

2016

家庭数y

6

10

16

22

26

(1)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程y=bx+a,判断它们之间是否是正相关还是负相关;

(2)根据所求的直线方程估计该公司2019年春节期间外出的旅游的家庭数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为零的等差数列{an}中,a1 , a2 , a5成等比数列,且该数列的前10项和为100,数列{bn}的前n项和为Sn , 且满足Sn= ,n∈N*
(1)求数列{an},{bn}的通项公式;
(2)记得数列{ }的前n项和为Tn , 求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 =1(a>0,b>0)的右焦点F作一条直线,当直线斜率为l时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(
A.(1,
B.(1,
C.(
D.(

查看答案和解析>>

同步练习册答案