精英家教网 > 高中数学 > 题目详情

不等式数学公式恒成立,则a的取值范围是 ________.

(-2,2)
分析:本题从形式上看是一个指数复合不等式,外层是指数型的函数,此类不等式的求解一般借助指数的单调性将其转化为其它不等式,再进行探究,本题可借助y=这个函数的单调性转化.转化后不等式变成了一个二次不等式,再由二次函数的性质对其进行转化求解即可.
解答:由题意,考察y=,是一个减函数
恒成立
∴x2+ax>2x+a-2恒成立
∴x2+(a-2)x-a+2>0恒成立
∴△=(a-2)2-4(-a+2)<0
即(a-2)(a-2+4)<0
即(a-2)(a+2)<0
故有-2<a<2,即a的取值范围是(-2,2)
故答案为(-2,2)
点评:本题考点是指数函数单调性的应用,考查利用单调性解不等式,本题是一个恒成立的问题,此类问题求解的方法就是通过相关的知识进行等价、灵活地转化,变成关于参数的不等式求参数的范围,这是此类题求解的固定规律,题后应好好总结本题的解题思路及其中蕴含的知识规律与技巧规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

时,不等式恒成立,则a的取值范围为(    )

    A. (0,1)     B. (1,2)     C. (1,2]      D. [1,2]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津市蓟县一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

设f(x)是R上的奇函数,且当x>0时,f(x)+xf′(x)>0,若f(3)=5,且当x∈(-∞,-a)∪(a,+∞),a>0时,不等式恒成立,则a的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2007-2008学年江苏省南通中学高一数学单元测试:指数与对数函数(解析版) 题型:填空题

不等式恒成立,则a的取值范围是    

查看答案和解析>>

科目:高中数学 来源:2010年东北育才、大连育明高三第二次联考数学试卷(文科)(解析版) 题型:选择题

下列说法:
①命题“”的否定是“?x∈R,2x>0”;
②关于x的不等式恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
④(1+kx210(k为正整数)的展开式中,x16的系数小于90,则k的值为2.
其中正确的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2010年黑龙江省四校高考数学二模试卷(文科)(解析版) 题型:选择题

下列说法:
①命题“”的否定是“?x∈R,2x>0”;
②关于x的不等式恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
④(1+kx210(k为正整数)的展开式中,x16的系数小于90,则k的值为2.
其中正确的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案