精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{1}{3}$x3-ax2+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)在区间[-2,4]上的最大值.

分析 (1)根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,建立等式关系,再根据切点在函数图象建立等式关系,解方程组即可求出a和b,从而得到函数f(x)的解析式;
(2)先求出f′(x)=0的值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值.

解答 解:(1)f′(x)=x2-2ax,
∵(1,f(1))在x+y-3=0上,
∴y=-x+3=f(1)=$\frac{1}{3}$-a+b=2①,
f′(1)=-1=1-2a②,
由①②解得:a=1,b=$\frac{8}{3}$;
(2)∵f(x)=$\frac{1}{3}$x3-x2+$\frac{8}{3}$,
∴f′(x)=x2-2x,
由f′(x)=0可知x=0和x=2是f(x)的极值点,所以有

x(-∞,0)0(0,2)2(2,+∞)
f′(x)+0-0+
f(x)极大值极小值
所以f(x)的单调递增区间是(-∞,0)和(2,+∞),单调递减区间是(0,2).
∵f(0)=$\frac{8}{3}$,f(2)=$\frac{4}{3}$,f(-2)=-4,f(4)=8,
∴在区间[-2,4]上的最大值为8.

点评 本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数求闭区间上函数的最值等基础题知识,考查运算求解能力,考查数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知对数函数 f(x)=logax(a>0,且a≠1)在区间[2,4]上的最大值与最小值之积为2,则a=(  )
A.$\frac{1}{2}$B.$\frac{1}{2}$或 2C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A.$\frac{4}{3}$cm3B.$\frac{8}{3}$cm3C.2cm3D.4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差败列{an}的前n项和为Sn,若a3+a16=10,则S18=(  )
A.50B.90C.100D.190

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x∈(1,+∞),则y=2x+$\frac{1}{x-1}$的最小值是2$\sqrt{2}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果直线l1:x+ax+1=0和直线l2:ax+y+1=0垂直,则实数a的值为(  )
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C1:x2+y2=4和圆2:(x-a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2$\sqrt{3}$的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知2sin2A+sin2B=sin2C.
(1)若b=2a=4,求△ABC的面积;
(2)求$\frac{{c}^{2}}{ab}$的最小值,并确定此时$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,若z=ax+y有最大值7,则实数a的值为-$\frac{3}{7}$.

查看答案和解析>>

同步练习册答案