【题目】已知椭圆:的右焦点为,过点的直线(不与轴重合)与椭圆相交于,两点,直线:与轴相交于点,过点作,垂足为D.
(1)求四边形(为坐标原点)面积的取值范围;
(2)证明直线过定点,并求出点的坐标.
【答案】(1);(2)证明见解析,
【解析】
(1)由题意设直线AB的方程,代入椭圆整理得纵坐标之和与之积,将四边形的面积分成2个三角形,根据底相同,列出关于面积的函数式,再结合均值不等式可得面积的取值范围;
(2)由(1)得B,D的坐标,设直线BD 的方程,令纵坐标为零得横坐标是定值,即直线BD过定点.
(1)由题F(1,0),设直线AB:,
联立,消去x,得,
因为,,
则
所以四边形OAHB的面积,
令
因为(当且仅当t=1即m=0时取等号),所以,
所以四边形OAHB的面积取值范围为;
(2),所以直线BD的斜率,所以直线BD的方程为,
令y=0,可得①
由(1)可得
化简①可得
则直线BD过定点.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中已知椭圆过点,其左、右焦点分别为,离心率为.
(1)求椭圆E的方程;
(2)若A,B分别为椭圆E的左、右顶点,动点M满足,且MA交椭圆E于点P.
(i)求证:为定值;
(ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,,,,且为的中点,延长交于点,且在底内的射影恰为的中点,为的中点,为上任意一点.
(1)证明:平面平面;
(2)求平面与平面所成锐角二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为的正方形中,线段BC的端点分别在边、上滑动,且,现将,分别沿AB,AC折起使点重合,重合后记为点,得到三被锥.现有以下结论:
①平面;
②当分别为、的中点时,三棱锥的外接球的表面积为;
③的取值范围为;
④三棱锥体积的最大值为.
则正确的结论的个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知是曲线:上的动点,将绕点顺时针旋转得到,设点的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,点,射线与曲线,分别相交于异于极点的两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,且圆经过椭圆C的上、下顶点.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相切,且与椭圆相交于M,N两点,证明:的面积为定值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com