精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,底面,点分别在棱上,且         
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的余弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
解法一:(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.
∴BC⊥平面PAC.…………
(Ⅱ)∵D为PB的中点,DE//BC,

又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,, 

与平面所成的角的余弦值为.…………
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.      
∴在棱PC上存在一点E,使得AE⊥PC,这时
故存在点E使得二面角是直二面角. …………
解法二:如图,以A为原煤点建立空间直角坐标系
,由已知可得
.
(Ⅰ)∵,     
,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.…………
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,

∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,

.
与平面所成的角的余弦值为.………
(Ⅲ)同解法1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正四棱锥P-ABCD,B1为PB的中点,D1为PD的中点,
则两个棱锥A-B1CD1,P-ABCD的体积之比是(     )
A.1:4B.3:8C.1:2D.2:3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱柱的所有棱长都相等,则二面角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形和矩形所在平面相互垂直,的中点.
(I)求证:
(Ⅱ)若直线与平面成45o角,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD—A1B1C1D1中,若E为A1C1中点,则直线CE垂直于(   )
A.ACB.BDC.A1DD.A1A

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图(1),在直角梯形中,分别是线段的中点,现将折起,使平面平面(如图(2)).
(Ⅰ)求证:平面
(Ⅱ)取中点为,求证: 平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分) .某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH ,图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在空间四边形ABCD中,AD=BC=,E、F分别是AB、CD的中点,EF=求异面直线AD和BC所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面上三条直线,如果这三条直线将平面划
分为六部分,则实数的所有取值为     。(将你认为所有正确的序号都填上)
①0      ②    ③1       ④2     ⑤3

查看答案和解析>>

同步练习册答案