精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形为平行四边形,为直角三角形且是等边三角形.

(1)求证:

(2)若,求二面角的正弦值.

【答案】(1)见解析; (2).

【解析】

(1)取AP中点F,连接DM,BM,由已知可证PA⊥DM,PA⊥BM,又DMBM=M,可得PA平面DMB,因为BD平面DMB,可证PA⊥BD;

(2)由已知可得DAP是等腰三角形,又ABP是等边三角形,可求出MDMB,以MP,MB,MD所在直线分别为x,y,z轴建立空间直角坐标系.求出平面DPC与平面PCB的一个法向量,由两法向量所成角的余弦值得二面角D﹣PC﹣B的余弦值,进一步求得正弦值.

(1)证明:取中点,连

为等边三角形,

,又

平面,又∵平面,∴.

(2)解:∵中点,结合题设条件可得

,∴.

如图,以所在直线分别为轴建立空间直角坐标系,

设平面的一个法向量

,∴.

设平面的一个法向量

,∴.

.

设二面角的平面角为,则由图可知,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是.

1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);

2)若这100名学生数学成绩分数段的人数y的情况如下表所示:

分组区间

y

15

40

40

m

n

且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数是(

①从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样

②线性回归直线一定过样本中心点

③对于一组数据,如果将它们改变为,则平均数与方差均发生变化

④若一组数据123的众数是2,则这组数据的中位数是2

⑤用系统抽样方法从编号为123,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,按照等间隔抽取的方法,则第5段中被抽中的学生编号为76

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线的四个交点按纵坐标从大到小依次为,记的面积分别为.

1)当直线轴重合时,若,求的值;

2)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。

1)求数列的通项公式;

2)设,求数列的最大项的值与最小项的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了人,患有呼吸系统疾病的人,其中人在室外工作,人在室内工作.没有患呼吸系统疾病的人,其中人在室外工作,人在室内工作.

1)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.

2)你能否在犯错误率不超过的前提下认为感染呼吸系统疾病与工作场所有关;

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性.

(Ⅱ)若时,存在两个正实数满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

同步练习册答案