精英家教网 > 高中数学 > 题目详情
椭圆x2+4y2=36的弦被(4,2)平分,则此弦所在直线方程为(  )
A、x-2y=0
B、x+2y-8=0
C、2x+3y-14=0
D、x+2y-8=0
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:设以A(4,2)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),A(4,2)为EF中点,x1+x2=8,y1+y2=4,利用点差法能够求出以A(4,2)为中点椭圆的弦所在的直线方程.
解答: 解:设以A(4,2)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(4,2)为EF中点,
∴x1+x2=8,y1+y2=4,
把E(x1,y1),F(x2,y2)分别代入椭圆x2+4y2=36,
x
2
1
+4y
2
1
=36
x
2
2
+4y
2
2
=36

∴(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴8(x1-x2)+16(y1-y2)=0,
∴k=
y1-y2
x1-x2
=-
1
2

∴以A(4,2)为中点椭圆的弦所在的直线方程为:y-2=-
1
2
(x-4),
整理,得x+2y-8=0.
故选:B.
点评:本题考查以(4,2)为中点椭圆的弦所在的直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为2,它的前n项和Sn=pn2+2n,n∈N*
(Ⅰ)求p的值及an
(Ⅱ)若bn=2n-1•(an-1),求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x∈R,2x>0
B、?x>1,lgx<0
C、?x∈R,(
1
2
x<0
D、?x∈R,log 
1
10
x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
1+x
-aln(1+x),g(x)=ln(1+x)-bx
(1)若函数f(x)在x=0处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式g(x)<0在(0,+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
(3)证明:不等式-1<
n
i=1
k
k2+1
-lnx
1
2
(n=1,2…)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4|
1
an
|,求数列{
1
bnbn+1
}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两超市同时开业,第一年的年销售额都为a万元,甲超市前n(n∈N+)年的总销售额为
a
2
(n2-n+2)万元;从第二年开始,乙超市第n年的销售额比前一年的销售额多(
2
3
n-1a万元.
(Ⅰ)设甲、乙两超市第n年的销售额分别为an,bn万元,求an,bn的表达式;
(Ⅱ)若在同一年中,某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购.若今年(2014年)为第一年,问:在今后若干年内,乙超市能否被甲超市收购?若能,请推算出在哪一年底被收购;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA=PC,
(1)证明:PB⊥AC;
(2)若平面PAC⊥平面平面ABCD,∠ABC=60°,PB=AB,求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n表示两条不同直线,α表示平面,
①若m∥α,n∥α,则m∥n
②若m⊥α,n?α,则m⊥n
③若m⊥α,m⊥n,则n∥α
④若m∥α,m⊥n,则n⊥α
以上四个命题中正确命题个数(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案