精英家教网 > 高中数学 > 题目详情
有一个边长为2的正六边形墙洞,一蜘蛛编制了一个近似为内切圆的蛛网,蚊子只有蛛网边缘与洞壁间的间隙处才能飞过,则飞过此洞的蚊子被捕食的概率为
 
考点:几何概型
专题:概率与统计
分析:根据几何概型概率求法,飞过此洞的蚊子被捕食的概率为内切圆的面积与正六边形的面积比.
解答: 解:正六边形的边长为2,所以面积为
3
4
×22=6
3
,其内切圆的半径为2×
3
2
=
3
,面积为π(
3
)2=3π

所以飞过此洞的蚊子被捕食的概率
6
3
=
3
π
6

故答案为:
3
6
π
点评:本题主要考查了几何概型,以及正六边形与其内切圆的面积的计算,解题的关键是弄清几何测度,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=1-an
(1)求数列{an}的通项公式;
(2)设bn=4(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,-1),
b
=(-2,t),若(2
a
-
b
)⊥
a
,则t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一学生在河岸紧靠河边笔直行走,经观察,在和河对岸靠近河边有一参照物与学生前进方向成30度角,学生前进200米后,测得该参照物与前进方向成75度角,则河的宽度为(  )
A、50(
3
+1)米
B、100(
3
+1)米
C、50
2
D、100
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-
1
x
)(3x+2)5的展开式中的常数项为(  )
A、210B、-240
C、32D、-208

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y1=a•x2,y2=c•2x,y3=b•x3,则由表中数据确定f(x),g(x),h(x)依次对应(  )
xf(x)g(x)h(x)
120.20.2
550253.2
10200200102.4
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y1,y3,y2

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三角形某边长为4,周长为10,则此三角形面积的最大值为(  )
A、2
5
B、4
5
C、
9
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
3
5
,则a2014=(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,1),B(3,-2),点P是直线l:2x+y-1=0上的动点,则|PA|2+|PB|2的最小值为(  )
A、
91
10
B、
93
10
C、
97
10
D、
99
10

查看答案和解析>>

同步练习册答案