精英家教网 > 高中数学 > 题目详情

【题目】电子芯片是“中国智造”的灵魂,是所有整机设备的“心脏”.某国产电子芯片公司,通过大数据分析,得到如下规律:生产一种高端芯片x)万片,其总成本为,其中固定成本为800万元,并且每生产1万片的生产成本为200万元(总成本=固定成本+生产成本),销售收入(单位:万元)满足假定生产的芯片都能卖掉.

1)将利润(单位:万元)表示为产量x(单位:万片)的函数;

2)当产量x(单位:万片)为何值时,公司所获利润最大?最大利润为多少万元?

【答案】(1);(2)产量为5万片时,公司所获利润最大,最大利润为9200万元.

【解析】

1)首先求出总成本函数,再由计算可得;

2)由(1)利用分段函数的性质及二次函数的性质计算可得.

1)当产量为万片时,由题意得.

因为

所以

2)由(1)可得,当时,. 所以当时,(万元).

时,单调递增,所以(万元)

综上,当时,(万元),即当产量为5万片时,公司所获利润最大,最大利润为9200万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论中恒成立的为( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.

1)求该产品不能销售的概率;

2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60.已知一箱中有产品4件,记一箱产品获利元,求的分布列,并求出均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,.

1)求函数在点处的切线方程;

2)若对于任意,存在,使得,求的取值范围;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线与焦点坐标为,离心率为的曲线相交于两点(为曲线的坐标原点),且.

(1)求曲线的标准方程;

(2)证明:都为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且,其中.

(1)求的值.

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)若,当三棱锥的体积最大时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数相邻两对称轴间的距离为,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.

1)求的解析式,并求的对称中心;

2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案