精英家教网 > 高中数学 > 题目详情

【题目】函数fx)=lg(-x1)的定义域与函数gx)=lgx3)的定义域的并集为集合A,函数tx)=ax2)的值域为集合B.

(1)求集合AB.  

(2)若集合AB满足ABB,求实数a取值范围.

【答案】(1)A={xx3x<-1},B={y|-ay4a};(2)(-∞,-3]∪(5,+∞).

【解析】

1)先求函数的定义域即得集合A,再求集合B;(2)由题得BA,所以-a34a<-1解不等式即得解.

解:(1)由题得. ,

所以A={xx3x<-1}.

因为函数tx)=ax2)是增函数,

所以B={yy4a}.

(2)∵ABB  

BA  

∴-a34a<-1

所以a≤-3或a5,

a的取值范围为(-∞,-3]∪(5,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计算机在数据处理时使用的是二进制,例如十进制的1、2、3、4在二进制分别表示为1、10、11、100.下面是某同学设计的将二进制数11111化为十进制数的一个流程图,则判断框内应填入的条件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为 , 且函数在区间上不是单调函数,则实数m的取值范围为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x、y满足 ,目标函数z=x+ay.
(1)当a=﹣2时,求目标函数z的取值范围;
(2)若使目标函数取得最小值的最优解有无数个,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)试确定函数在(0,+∞)上的单调性;

(2)若,函数在(0,2)上有极值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)ann∈N*恒成立,则整数λ的最大值为(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(a>0,且a≠1).

(1)讨论f(x)的奇偶性;

(2)a的取值范围,使f(x)>0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列{an}中,a1=2,且2a1 , a3 , 3a2成等差数列.
(Ⅰ) 求等比数列{an}的通项公式;
(Ⅱ) 若数列{bn}满足bn=11﹣2log2an , 求数列{bn}的前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在实数m,使得在[-1,3]上fx)的图象恒在直线y=2mx+1的上方?若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案