精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实数.

(1)时,求的最小值

(2)若存在实数,使得对任意实数都有成立,求的取值范围.

【答案】(1)(2)

【解析】

1)根据题意将二次函数配成顶点式,画出函数图像.通过对分类讨论,即可确定在不同区间内的最小值.

2)根据函数解析式,代入求得,再代入不等式中可得关于的二次不等式.构造函数,即分析对任意实数成立即可.由二次函数性质可知需满足.得不等式组后,可利用求得的取值范围.在此范围内有解即可.构造函数,即在有解即可.根据二次函数的对称、与y轴交点情况,分类讨论即可求得n的取值范围.

1)函数

对应函数图像如下图所示:

(),,

(),,

(),.

综上,

2)因为

因为

代入得,变形可得

,即对任意实数,成立

由二次函数性质可得,代入可得

关于t的不等式组有解即可,

解不等式可得

上有解即可

因为,所以,所以函数y轴交点位于y轴正半轴

()当对称轴位于左侧时,满足即可,也就是,解不等式组可得,

()当对称轴位于之间时,满足即可,也就是,解得

()当对称轴在右侧时, ,函数时无解.

综上可知

又因为,

n的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为圆上一动点,轴于点,记线段的中点的运动轨迹为曲线.

1)求曲线的方程;

2)直线经过定点,且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形,上部分是以为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.

1)若设计米,米,问能否保证上述采光要求?

2)在保证上述采光要求的前提下,如何设计的长度,可使得活动中心的截面面积最大?(注:计算中3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)完成表一中对应的值,并在坐标系中用描点法作出函数的图象:(表一)

0.25

0.5

0.75

1

1.25

1.5

0.08

1.82

2.58

2)根据你所作图象判断函数的单调性,并用定义证明;

3)说明方程的根在区间存在的理由,并从表二中求使方程的根的近似值达到精确度为0.01时运算次数的最小值并求此时方程的根的近似值,且说明理由.

(表二)二分法的结果

运算次数的值

左端点

右端点

-0.537

0.6

0.75

0.08

-0.217

0.675

0.75

0.08

-0.064

0.7125

0.75

0.08

-0.064

0.7125

0.73125

0.011

-0.03

0.721875

0.73125

0.011

-0.01

0.7265625

0.73125

0.011

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

0

1

2

3

1)求的值;

2)若每个月被消费者投诉的次数互不影响,求该汽车品牌在五个月内被消费者投诉3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上的点.

(1)过点作直线相切,求切线的方程;

(2)如果存在过点的直线与抛物线交于两点,且直线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】).

(1)求函数的零点;

(2)设均为正整数,且为最简根式,若存在,使得可唯一表示为的形式(),求证:

(3)已知,是否存在,使得

成立,若存在,试求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案