【题目】已知几何体,其中四边形为直角梯形,四边形为矩形, ,且, .
(1)试判断线段上是否存在一点,使得平面,请说明理由;
(2)若,求该几何体的表面积.
【答案】(1)见解析;(2)
【解析】试题分析:(1)取的中点,连接, ,根据三角形中位线定理以及梯形的性质可得四边形为平行四边形,∴,由线面平行的判定定理可得结果;(2)先证明平面,又因为,∴平面,∴,根据勾股定理可得,进而得, 为直角三角形, 结合四边形为直角梯形,四边形为矩形,进而可得结果.
试题解析:(1)存在线段的中点,使得平面,理由如下:
取的中点,连接, ,
∵为的中点,∴,且,
又∵四边形为直角梯形, ,且,
∴, ,
∴四边形为平行四边形,∴,
∵平面, 平面,
∴平面.
(2)因为四边形为直角梯形, ,且, ,
所以,∴.
又,因为,所以,
因为, , ,所以平面,
又因为,∴平面,∴,
所以,进而.
所以,
因为为直角三角形,所以,
又四边形也为直角梯形, ,
又, ,
所以该几何体的表面积为.
科目:高中数学 来源: 题型:
【题目】中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近,居全球首位。中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称。某科研单位在研发的钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:克)的关系为:当时, 是的二次函数;当时, .测得部分数据如表.
x(单位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y关于x的函数关系式y=
(2)求函数的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,E为CD的中点.
(1)求证:BC∥平面PAE;
(2)求点A到平面PCD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算:xy=x(1-y).不等式(x-a)(x+a)<1对任意实数x都成立.
(1)若α、β中有且只有一个真命题,求实数a的取值范围;
(2)若α、β中至少有一个真命题,求实数a的取值范围;
(3)若α、β中至多有一个真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个人下半身长(肚脐至足底)与全身长的比近似为(,称为黄金分割比),堪称“身材完美”,且比值越接近黄金分割比,身材看起来越好,若某人着装前测得头顶至肚脐长度为72,肚脐至足底长度为103,根据以上数据,作为形象设计师的你,对TA的着装建议是( )
A.身材完美,无需改善B.可以戴一顶合适高度的帽子
C.可以穿一双合适高度的增高鞋D.同时穿戴同样高度的增高鞋与帽子
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.
(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;
(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;
(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是等边三角形且垂直于底面,底面是矩形,,是的中点.
(1)证明:平面;
(2)点在棱上,且直线与直线所成角的余弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)判断平面BCE与平面CDE的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,其离心率为,以原点为圆心,椭圆的短轴长为直径的圆被直线截得的弦长等于.
(1)求椭圆的方程;
(2)设为椭圆的左顶点,过点的直线与椭圆的另一个交点为,与轴相交于点,过原点与平行的直线与椭圆相交于两点,问是否存在常数,使恒成立?若存在,求出;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com