精英家教网 > 高中数学 > 题目详情

【题目】若6x2+4y2+6xy=1,x,y∈R,则x2﹣y2的最大值为

【答案】
【解析】解:设x2﹣y2=t,

则6tx2+4ty2+6txy=x2﹣y2

即(6t﹣1)x2+6txy+(4t+1)y2=0,

若y=0,则x2= ,此时t=

若y≠0,则(6t﹣1)( 2+6t +(4t+1)=0有解

∴6t﹣1=0或36t2﹣4(6t﹣1)(4t+1)≥0,

解得﹣ ≤t≤

当且仅当x+3y=0且y2= 时,t取得最大值

所以答案是

【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(1)求椭圆C的方程;
(2)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求证:AC⊥FB
(2)求二面角E﹣FB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驾马初日行九十七里,日减半里.良马先至齐,复还迎驽马.何日相逢,”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”现有三种说法:①驽马第九日走了93里路;②良马四日共走了930里路;③行驶5天后,良马和驽马相距615里. 那么,这3个说法里正确的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|2x﹣a|(a∈R).
(1)若f(1)<11,求a的取值范围;
(2)若a∈R,f(x)≥x2﹣x﹣3恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=4,an+1= ,n∈N* , Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1
(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4x3+ ,x∈[0,1],证明:
(Ⅰ)f(x)≥1﹣2x+3x2
(Ⅱ) <f(x)≤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,且满足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 则a2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量t(袋),得到如下数据:

第一次

第二次

第三次

第四次

第五次

参会人数x(万人)

11

9

8

10

12

原材料t(袋)

28

23

20

25

29

(Ⅰ)请根据所给五组数据,求出t关于x的线性回归方程
(Ⅱ)已知购买原材料的费用C(元)与数量t(袋)的关系为 投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入﹣原材料费用).
(参考公式: =

查看答案和解析>>

同步练习册答案