精英家教网 > 高中数学 > 题目详情
6.用辗转相除法或者更相减损术求二个数324,135的最大公约数.

分析 用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数

解答 解:324=135×2+54,
135=54×2+27,
54=27×2+0,
∴27是324与135的最大公约数;

点评 本题考查用辗转相除法求两个数的最大公约数,进制之间的转化,本题是一个基础题,在解题时注意数字的运算不要出错,注意与更相减损术进行比较.更相减损术的方法和步骤是:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的减数和差相等为止.进制转化要注意十进制与其它进制之间转化的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin(2x+$\frac{π}{3}$)-cos(2x+$\frac{π}{6}$)-$\sqrt{3}$cos2x(x∈R).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,B为锐角,且f(B)=$\sqrt{3}$,AC=$\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,cosA=$\frac{\sqrt{3}}{2}$,∠B-∠C=90°,边长c=6,求边长b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知0<α<$\frac{π}{2}$<β<π,tanα=$\frac{4}{3}$,cos(β-α)=$\frac{\sqrt{2}}{10}$,则β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆B的圆心B坐标为(2,1)直线l:x+2y-2=0与圆B相交于M,N两点,|MN|=$\frac{2\sqrt{5}}{5}$.
(1)求圆B的方程;
(2)设直线l:x+2y-2=0与x,y轴分别交于点A,C,将四边形OABC折叠,使O点落在线段CB上,若折痕所在直线的斜率为k,试写出折痕所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直.AB=$\sqrt{2}$,AF=1.M是线段EF的中点
(1)求证:BD⊥AM
(II)求证:AM∥平面BDE;
(III)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在实数集R上的偶函数,且在(0,+∞)上递增,则(  )
A.f(20.7)<f(-log25)<f(-3)B.f(-3)<f(20.7)<f(-log25)
C.f(-3)<f(-log25)<f(20.7D.f(20.7)<f(-3)<f(-log25)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+1,x≥2}\\{x+1,x<2}\end{array}\right.$,设计一个算法,求函数的任一函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间[-2,1]上随机选一个数x,使得|x-1|≤2成立的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案