精英家教网 > 高中数学 > 题目详情

一个正三棱柱恰好有一个内切球(球与三棱柱的两个底面和三个侧面都相切)和一个外接球(球经过三棱柱的6个顶点),则此内切球与外接球表面积之比为________.

1:5
分析:设正三棱柱底面正三角形的边长为a,当球外切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距,求出正三棱柱的高为,当球外接正三棱柱时,球的圆心是正三棱柱高的中点,且球的圆心与正三棱柱两个底面正三角形构成两个正三棱锥,求出外接球的半径,即可求出内切球与外接球表面积之比.
解答:设正三棱柱底面正三角形的边长为a,其内切球的半径为R
当球外切于正三棱柱时,球的半径R等于正三棱柱的底面正三角形的重心到对边的距离即R=,到相对棱的距离是
又正三棱柱的高是其内切球半径的2倍,故正三棱柱的高为
球外接正三棱柱时,球的圆心是正三棱柱高的中点,且球的圆心与正三棱柱两个底面正三角形构成两个正三棱锥,顶点在底面上的投影恰好是底面三角形的重心到顶点的距离,棱锥的高为
故正三棱锥外接球的半径满足=
∴内切球与外接球表面积之比为4(πR2):(4πR22)=R2:R22=1:5.
故答案为1:5
点评:本题是基础题,考查空间想象能力,分析问题解决问题的能力,是常考题型,求内切球与外接球的半径是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个正三棱柱恰好有一个内切球(即恰好与两底面和三个侧面都相切)和一外接球(即恰好经过三棱柱的6个顶点),此内切球与外接球的表面积之比为(    )

A.1∶            B.1∶3

C.1∶           D.1∶5

查看答案和解析>>

同步练习册答案