精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow{b}$=(5$\sqrt{3}$cosx,cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{a}$|2-$\frac{7}{2}$.
(1)求函数f(x)的最小正周期;
(2)若x∈($\frac{2π}{3}$,$\frac{11π}{12}$)时,f(x)=-3,求cos2x的值;
(3)若cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x)=m有且仅有一个实根,求实数m的取值范围.

分析 (1)根据平面向量数量积运算建立关系,求解f(x),利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期
(2)根据x∈($\frac{2π}{3}$,$\frac{11π}{12}$)时,出内层函数的取值范围,f(x)=-3,化简f(x),可求cos2x的值.
(3)根据cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),确定x的范围,利用数形结合法作f(x)=m有且仅有一个实根,可得答案.

解答 解:(1)由函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{a}$|2-$\frac{7}{2}$.
可得:f(x)=$5\sqrt{3}$sinxcosx+2cos2x+sin2x+4cos2x-$\frac{7}{2}$
=$\frac{5\sqrt{3}}{2}$sin2x+$\frac{1}{2}$-$\frac{1}{2}$cos2x+3+3cos2x$-\frac{7}{2}$
=$\frac{5\sqrt{3}}{2}$sin2x+$\frac{5}{2}$cos2x
=5sin(2x+$\frac{π}{6}$)
∴函数f(x)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}=π$.
(2)当x∈($\frac{2π}{3}$,$\frac{11π}{12}$)
可得2x+$\frac{π}{6}$∈[$\frac{3π}{2}$,2π]
∵f(x)=-3,即5sin(2x+$\frac{π}{6}$)=-3
∴sin(2x+$\frac{π}{6}$)=$-\frac{3}{5}$
∴cos(2x+$\frac{π}{6}$)=$\frac{4}{5}$
∴cos2x=cos[(2x$+\frac{π}{6}$)$-\frac{π}{6}$)=cos(2x+$\frac{π}{6}$)cos$\frac{π}{6}$)+sin(2x+$\frac{π}{6}$)sin$\frac{π}{6}$)=$\frac{4\sqrt{3}-3}{10}$
(3)由题意∵cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴x∈[$-\frac{π}{3}$,$\frac{π}{3}$],
∵f(x)=m有且仅有一个实根,即函数f(x)与y=m的图象只有一个交点.
f(x)=5sin(2x+$\frac{π}{6}$)
∴2x+$\frac{π}{6}$∈[$-\frac{π}{2}$,$\frac{5π}{6}$]
令2x+$\frac{π}{6}$=t,则t∈[$-\frac{π}{2}$,$\frac{5π}{6}$],那么f(x)=5sin(2x+$\frac{π}{6}$)转化为g(t)=5sint与y=m的图象只有一个交点.
,g(t)=5sint图象如下:

从图象可看出:当-5≤m$<\frac{5}{2}$或m=5时,函数y=m与g(t)=5sint只有一个交点.
故得实数m的取值范围是{m|-5≤m$<\frac{5}{2}$或m=5}

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数,则函数f(x)的图象(  )
A.关于点($\frac{7π}{12}$,0)对称B.关于点(-$\frac{π}{12}$,0)对称
C.关于直线x=-$\frac{π}{12}$对称D.关于直线x=$\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b,c∈R且c≠0.
 x 1.5 314 27 
 lgx 2a+b a+b a-c+1 b+c a+2b+c 3(c-a) 2(a+b) b-a 3(a+b)
若上表中的对数值恰有两个是错误的,则a的值为(  )
A.lg$\frac{2}{21}$B.$\frac{1}{2}$lg$\frac{3}{14}$C.$\frac{1}{2}$lg$\frac{3}{7}$D.lg$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx+$\frac{b}{x}$+1,曲线y=f(x)在点(1,2)处切线平行于x轴.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x>1时,不等式(x-1)f(x)>(x-k)lnx恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面进位制之间转化错误的是(  )
A.31(4)=62(2)B.101(2)=5(10)C.119(10)=315(6)D.27(8)=212(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦点,过F1的直线l与双曲线分别交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积为$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$与向量$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2,|$2\overrightarrow a+\overrightarrow b$|=2$\sqrt{13}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案