精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求证:EF⊥B1C.
分析:(I)欲证EF∥平面ABC1D1,根据直线与平面平行的判定定理可知只需证EF与平面ABC1D1内一直线平行即可,连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF∥D1B,而D1B?平面ABC1D1,EF?平面ABC1D1,满足定理所需条件;
(II)欲证EF⊥B1C,可先证B1C⊥面ABC1D1,根据直线与平面垂直的判定定理可知只需证B1C与面ABC1D1内两相交直线垂直,而B1C⊥AB,B1C⊥BC1,满足定理条件,问题即可得证.
解答:精英家教网证明:(Ⅰ)连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则
EF∥D1B
D1B?平面ABC1D1
EF不包含于平面ABC1D1
?EF∥平面ABC1D1

(Ⅱ)根据题意可知:
B1C⊥AB
B1C⊥BC1
AB,B1C?平面ABC1D1
AB∩BC1=B
?
B1C⊥面ABC1D1
BD1?面ABC1D1

?
B1C⊥BD1
EF∥BD1
?EF⊥B1C.
点评:本题考查直线与平面平行的判定,以及空间两直线的位置关系的判定,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

17、如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点
(1)求证:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体中,E、F分别为DD1、BD的中点.  
(1)求证:EF∥面ABC1D1
(2)求证EF∥BD1
(3)求三棱锥VB1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(I)求证:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱锥F-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:CF⊥B1E;
(Ⅱ)求三棱锥VB1-EFC的体积.

查看答案和解析>>

同步练习册答案