精英家教网 > 高中数学 > 题目详情

如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;
(2)用反证法证明:直线ME与BN是两条异面直线.

(1)  (2)见解析

解析(1)解:取CD的中点G,
连结MG,NG.

因为四边形ABCD,DCEF为正方形,
且边长为2,
所以MG⊥CD,MG=2,NG=.
因为平面ABCD⊥平面DCEF,
所以MG⊥平面DCEF.可得MG⊥NG.
所以MN==.
(2)证明:假设直线ME与BN共面,
则AB?平面MBEN,且平面MBEN与平面DCEF交于EN.
由题意知两正方形不共面,故AB?平面DCEF.
又AB∥CD,所以AB∥平面DCEF,
而EN为平面MBEN与平面DCEF的交线,
所以AB∥EN.
又AB∥CD∥EF,所以EN∥EF,
这与EN∩EF=E矛盾,故假设不成立.
所以ME与BN不共面,它们是异面直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,底面半径与母线所成的角的大小等于

(1)当时,求异面直线所成的角;
(2)当三棱锥的体积最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:

(1)求两点间的距离;
(2)证明:平面
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,,,求:

(1)异面直线所成角的余弦值;
(2)直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.

(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点.

(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面ADF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求证:平面B1AC∥平面DC1A1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB、CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE.求证:

(1)平面BCEF⊥平面ACE;
(2)直线DF∥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形ABCD中,ADBC,∠ADC=90°,BABC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示.点EF分别为棱PCCD的中点.
 
(1)求证:平面OEF∥平面APD
(2)求证:CD⊥平面POF
(3)在棱PC上是否存在一点M,使得MPOCF四点距离相等?请说明理由.

查看答案和解析>>

同步练习册答案