【题目】己知椭圆W:+=1(a>b>0),直线:=与轴,轴的交点分别是椭圆W的焦点与顶点。
(1)求椭圆W的方程;
(2)设直线m:=kx(k≠0)与椭圆W交于P,Q两点,过点P(,)作PC⊥轴,垂足为点C,直线交椭圆w于另一点R。
①求△PCQ面积的最大值;②求出∠QPR的大小。
【答案】(1);(2)①,②90.
【解析】
(1)由题意求出c,b,进而得到椭圆W的方程;
(2)①设P(,),则Q(,),C(,0),可知S,利用点在椭圆上及均值不等式即可得到△PCQ面积的最大值;②设P(,),则Q(,),C(,0),k=,直线QR的斜率,直线QR的方程:()与椭圆方程联立可得(2+)2-2,求得R点坐标,进而得到即可得到结果.
(1)直线:与轴,轴的交点分别(,0),(0,),
可知c=,,椭圆W的方程。
(2)①设P(,),则Q(,),C(,0),可知S,
有已知可知,根据重要不等式得,S,
当且仅当或时,面积取得最大值。
②设P(,),则Q(,),C(,0),k=。
直线QR的斜率。
可得直线QR的方程:(),设点R(,),
联立消去得(2+)2-2,
则,解得,所以,点R(,)。
因为,所以,所以∠QPR=90°。
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.
(3)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是正方体的平面展开图,在这个正方体中,正确的命题是( )
A. BD与CF成60°角 B. BD与EF成60°角 C. AB与CD成60°角 D. AB与EF成60°角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下列结论正确的是( )
A. 把上所有的点向右平移个单位长度,再把所有图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到曲线
B. 把上所有点向左平移个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线
C. 把上各点的横坐标缩短到原来的倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线
D. 把上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, 于, .将沿折起至,使得平面平面(如图2), 为线段上一点.
图1 图2
(Ⅰ)求证: ;
(Ⅱ)若为线段中点,求多面体与多面体的体积之比;
(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩,现有甲、乙两位同学的20次成绩如茎叶图所示:
(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;
(2)现从甲、乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的离心率与双曲线的离心率互为倒数,且过点.
(1)求椭圆C的方程;
(2)过作两条直线与圆相切且分别交椭圆于M、N两点.
① 求证:直线MN的斜率为定值;
② 求△MON面积的最大值(其中O为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com