精英家教网 > 高中数学 > 题目详情

【题目】设 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比为q的等比数列,a2 , a4 , a6成公差为1的等差数列,则q的最小值是

【答案】
【解析】解:方法1:∵1=a1≤a2≤…≤a7 a2 , a4 , a6 成公差为1的等差数列, ∴a6=a2+2≥3,
∴a6的最小值为3,
∴a7的最小值也为3,
此时a1=1且a1 , a3 , a5 , a7 成公比为q的等比数列,必有q>0,
∴a7=a1q3≥3,
∴q3≥3,q≥
方法2:
由题意知1=a1≤a2≤…≤a7;中a1 , a3 , a5 , a7 成公比为q的等比数列,a2 , a4 , a6 成公差为1的等差数列,得 ,所以 ,即q3﹣2≥1,所以q3≥3,解得q≥
故q的最小值是:
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个平面垂直,下列命题: ①一个平面内的已知直线必垂直于另一个平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面内的无数条直线.
③一个平面内的任一条直线必垂直于另一个平面.
④一个平面内垂直于交线的直线与另一个平面垂直.
其中正确命题的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+bx﹣2<0的解集为{x|﹣2<x< },则ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点. (Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是( )
A.y=x与
B.y=x与
C.y=2lgx与y=lgx2
D.

查看答案和解析>>

同步练习册答案