精英家教网 > 高中数学 > 题目详情
2.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量$\overrightarrow{OP}$与$\overrightarrow{O{A_i}}$的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为$\frac{5π}{12}$.

分析 设点P位于弧$\widehat{{A}_{1}{A}_{2}}$上时,设∠POA1=α,当$0≤α<\frac{π}{6}$时,则θ1=α,θ2=$\frac{π}{3}$-α,θ3=$\frac{2π}{3}$-α,θ4=π-α,θ5=$α+\frac{2π}{3}$,θ6=$α+\frac{π}{3}$.将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,α,$\frac{π}{3}$-α,$α+\frac{π}{3}$,$\frac{2π}{3}$-α,$α+\frac{2π}{3}$,π-α,利用等差数列的性质即可得出.

解答 解:设点P位于弧$\widehat{{A}_{1}{A}_{2}}$上时,设∠POA1=α,当$0≤α<\frac{π}{6}$时,则θ1=α,θ2=$\frac{π}{3}$-α,θ3=$\frac{2π}{3}$-α,θ4=π-α,θ5=$α+\frac{2π}{3}$,θ6=$α+\frac{π}{3}$.
将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,α,$\frac{π}{3}$-α,$α+\frac{π}{3}$,$\frac{2π}{3}$-α,$α+\frac{2π}{3}$,π-α,
由2($\frac{π}{3}$-α)=α+$α+\frac{π}{3}$,解得α=$\frac{π}{12}$,此时六个角分别为:$\frac{π}{12}$,$\frac{3π}{12}$,$\frac{5π}{12}$,$\frac{7π}{12}$,$\frac{9π}{12}$,$\frac{11π}{12}$,成等差数列,
则该等差数列的第3项为 $\frac{5π}{12}$.
其它情况类比可得.
故答案为:$\frac{5π}{12}$.

点评 本题考查了向量的夹角、等差数列的通项公式及其性质,考查了分类讨论方法、类比推理与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设 m、n是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若m∥n,n?α,则m∥αB.若m∥α,n?α,则m∥nC.若m⊥n,n?α,则m⊥αD.若m⊥α,m∥n,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①当λ∈R,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$时,λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$;
②当λ1,λ2,…,λn∈R,且λ12+…+λn=0时,λ1$\overrightarrow{a}$+λ2$\overrightarrow{a}$+…+λn$\overrightarrow{a}$=$\overrightarrow{0}$;
③当λ1,λ2,…λn∈R,且λ12+…+λn=0时,$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,…,$\overrightarrow{{a}_{n}}$是n个向量,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,则λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$.
其中真命题有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{a•2^x+a-2}{2^x+1}$是定义在[-2,2]上的奇函数.
(1)求实数a的值,并求f(1)的值;
(2)证明:f(x)在定义域上为增函数;
(3)解不等式f(2x-1)<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足$\frac{1}{lg(1-\sqrt{{a}_{1}})}$+$\frac{2}{lg(1-\sqrt{{a}_{2}})}$+…+$\frac{n}{lg(1-\sqrt{{a}_{n}})}$=-$\frac{n}{lg2}$(n≥1).
(1)求数列{an}的通项公式;
(2)对于任意实数x和正整数n,
(Ⅰ)证明:$\frac{{a}_{n}}{n}$≥x($\frac{1}{{2}^{0}}$-x)+x($\frac{1}{2}$-x)+x($\frac{1}{{2}^{2}}$-x)+…+x($\frac{1}{{2}^{n-1}}$-x);
(Ⅱ)证明:$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$>$\frac{2(n-1)^{2}}{n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{3}&{2}&{{c}_{2}}\end{array})$,解为$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,则c1-c2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y2=4x,直线l过焦点F,与其交于A,B两点,且$\overrightarrow{BA}=4\overrightarrow{BF}$,则△AOB(O为坐标原点)面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}\right.$,当x∈[-2,2]时不等式f(x+a)≥f(2a-x)恒成立,则实数a的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在空间直角坐标系Oxyz中,已知平面α的一个法向量是$\overrightarrow{n}$=(1,-1,2),且平面α过点A(0,3,1).若P(x,y,z)是平面α上任意一点,则点P的坐标满足的方程是x-y+2z+1=0.

查看答案和解析>>

同步练习册答案