精英家教网 > 高中数学 > 题目详情

【题目】低密度脂蛋白是一种运载胆固醇进入外周组织细胞的脂蛋白颗粒,可被氧化成氧化低密度脂蛋白,当低密度脂蛋白,尤其是氧化修饰的低密度脂蛋白过量时,它携带的胆固醇便积存在动脉壁上,久了容易引起动脉硬化,因此低密度脂蛋白被称为“坏的胆固醇”.为了调查某地中年人的低密度脂蛋白浓度是否与肥胖有关,随机调查该地100名中年人,得到2×2列联表如下:

肥胖

不肥胖

总计

低密度脂蛋白不高于

12

63

75

低密度脂蛋白高于

8

17

25

总计

20

80

100

由此得出的正确结论是( )

A.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

B.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

C.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

D.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

【答案】C

【解析】

根据列联表计算出,然后借助于临界值表可得结论.

由已知,由临界值表知选项C正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,平面的中点.

(1)求证:平面平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为.

1)求数列的通项公式;

2)记.若对任意正整数n恒成立,求k的取值范围;

3)已知集合.若以a为首项,a为公比的等比数列前n项和记为,问是否存在实数a,使得对于任意的均有.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一平面上有32个点其中无三点共线证明在这32个点中至少能找到2135个四点组形成凸四边形的四个顶点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】;②;③为常数)这个条件中选择个条件,补全下列试题后完成解答,设等差数列的前项和为,若数列的各项均为正整数,且满足公差____________.

1)求数列的通项公式;

2)令,求数列的前项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点分别为右支上一动点,的内切圆的圆心为,半径,则的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,交于一点,除以外的其余各棱长均为2.

作平面与平面的交线,并写出作法及理由

求证:平面平面

若多面体的体积为2,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度单位长度:,其茎叶图如图所示,则下列描述正确的是( )

A. 甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐

B. 甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐

C. 乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐

D. 乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐

查看答案和解析>>

同步练习册答案