精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足 是数列的前项和.

(1)求数列的通项公式

(2)令,求数列的前项和.

【答案】(1)是以为首项,2为公差的等差数列 (2)

【解析】试题分析:(1) 可得两式相减可得由等差数列可得结果;(2)1) 可得根据错位相减法可得数列的前项和.

试题解析:(1)....................... ①

时, ………………. ②

①-②得

从而

时,

因此,数列是以为首项,2为公差的等差数列.

(2)

……………. ③

……… ④

③-④得

整理得

【 方法点睛】本题主要考查等比数列和等差数列的通项以及错位相减法求数列的的前 项和,属于中档题.一般地,如果数列是等差数列, 是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).

(1)请根据题意,将2×2列联表补充完整;

优秀

非优秀

总计

男生

女生

总计

50

(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?

附: ,其中.

参考数据

≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;

>2.706时,有90%的把握判定变量A,B有关联;

>3.841时,有95%的把握判定变量A,B有关联;

>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求的近似值(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[-1,1]上的奇函数f(x),已知当x[-1,0]时,f(x)= (aR).

(1)写出f(x)在[0,1]上的解析式;

(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14)

如图的几何体中, 平面平面为等边三角形的中点.

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)判断函数的单调性,并用定义证明;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:

若抽取学生人,成绩分为(优秀),(良好),(及格)三个等次,设分别表示数学成绩与地理成绩,例如:表中地理成绩为等级的共有(人),数学成绩为等级且地理成绩为等级的共有8人.已知均为等级的概率是.

(1)设在该样本中,数学成绩的优秀率是,求的值;

(2)已知,求数学成绩为等级的人数比等级的人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在函数为常数),使得对函数定义域内任意都有成立,那么称为函数的一个“线性覆盖函数”.给出如下四个结论:

①函数存在“线性覆盖函数”;

②对于给定的函数,其“线性覆盖函数”可能不存在,也可能有无数个;

为函数的一个“线性覆盖函数”;

④若为函数的一个“线性覆盖函数”,则

其中所有正确结论的序号是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足

(1)求的解析式;(2)作出函数的图像,并写出其单调区间;

(3)求在区间)上的最小值。

查看答案和解析>>

同步练习册答案