精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.

1)求证:平面平面

2)若,求几何体的体积.

【答案】1)证明见解析(2

【解析】

1)取BC的中点E,连接,可证明平面,根据可证明四边形为平行四边形,从而可证平面,进而证明平面平面.2)将所求几何体分割为四棱锥和直三棱柱两部分,通过四棱锥和棱柱的体积分别计算求和可得几何体的体积.

解:(1)取BC的中点E,连接,∵,∴

是正方形,∴,又平面平面ABC,∴平面ABC

又∵平面ABC,∴

又∵平面,∴平面

,∴四边形为平行四边形,∴

∴四边形为平行四边形

,∴平面

平面,∴平面平面

2)由(1)知所求几何体为四棱锥和直三棱柱的组合体

平面,∴平面

∴四棱锥的体积

直三棱柱的体积

∴所求几何体的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,越来越多的人习惯用手机应用程序(简称app)获取新闻资讯.为了解用户对某款新闻类app的满意度,随机调查了300名用户,调研结果如表:(单位:人)

青年人

中年人

老年人

满意

60

70

x

一般

55

25

y

不满意

25

5

10

1)从所有参与调研的人中随机选取1人,估计此人“不满意”的概率;

2)从参与调研的青年人和中年人中各随机选取1人,估计恰有1人“满意”的概率;

3)现需从参与调研的老年人中选择6人作进一步访谈,若在“满意”、“一般”、“不满意”的老年人中各取2人,这种抽样是否合理?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|xm||2x1|.

(1)m=-1时,求不等式f(x)≤2的解集;

(2)f(x)≤|2x1|的解集包含,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线E的参数方程为为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,直线的极坐标方程分别为交曲线E于点AB交曲线E于点CD.

1)求曲线E的普通方程及极坐标方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】羽毛球比赛中,首局比赛由裁判员采用抛球的方法决定谁先发球,在每回合争夺中,赢方得1分且获得发球权.每一局中,获胜规则如下:①率先得到21分的一方赢得该局比赛;②如果双方得分出现,需要领先对方2分才算该局获胜;③如果双方得分出现,先取得30分的一方该局获胜.现甲、乙两名运动员进行对抗赛,在每回合争夺中,若甲发球时,甲得分的概率为;乙发球时,甲得分的概率为

(Ⅰ)若,记甲以赢一局的概率为,试比较的大小;

(Ⅱ)根据对以往甲、乙两名运动员的比赛进行数据分析,得到如下列联表部分数据.若不考虑其它因素对比赛的影响,并以表中两人发球时甲得分的频率作为的值.

甲得分

乙得分

总计

甲发球

50

100

乙发球

60

90

总计

190

①完成列联表,并判断是否有95%的把握认为比赛得分与接、发球有关

②已知在某局比中,双方战成,且轮到乙发球,记双方再战回合此局比赛结束,求的分布列与期望.

参考公式:,其中

临界值表供参考:

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,其中的中点,交于点,且平面

1)证明:平面平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CMCN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的AB处设置观景台,记BC=aAC=bAB=c(单位:百米)

1)若abc成等差数列,且公差为4,求b的值;

2)已知AB=12,记∠ABC,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若的最大值为,求的值;

2)若存在实数,使得,求证:

查看答案和解析>>

同步练习册答案