精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的方程为,过点为常数)作抛物线的两条切线,切点分别为.

(1)过焦点且在轴上截距为的直线与抛物线交于两点,两点在轴上的射影分别为,且,求抛物线的方程;

(2)设直线的斜率分别为.求证:为定值.

【答案】(1);(2)见解析.

【解析】试题分析:(1)由抛物线方程可知其焦点坐标,则可得直线的方程,联立直线与抛物线方程,消去,根据根与系数关系可得点的横坐标关系式,再由,从而问题可得解;(2)由题意,根据导数几何意义,通过两切点计算两条切线方程,从而得到两切线斜率与抛物线参数的关系式,从而可证明,两斜率的乘值为定值.

试题解析:(1)因为抛物线的焦点坐标是

所以过焦点且在轴上截距为的直线方程是 ,即.

联立消去并整理,得

设点

.

解得.

所以抛物线的方程为.

(2)设点 .

依题意,由,得

.

所以切线的方程是

.

又点在直线上,

于是有

.

同理,有

因此,是方程的两根,

.

所以

为定值得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是,当时,.

1)求证:是奇函数;

2)求在区间上的解析式;

3)是否存在正整数,使得当时,不等式有解?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在函数为常数),使得对函数定义域内任意都有成立,那么称为函数的一个线性覆盖函数.给出如下四个结论:

①函数存在线性覆盖函数

②对于给定的函数,其线性覆盖函数可能不存在,也可能有无数个;

为函数的一个线性覆盖函数

④若为函数的一个线性覆盖函数,则

其中所有正确结论的序号是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若,且对任意的,都有,求实数的取值范围;

2)若,且单调递增,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)解方程

2)令,求的值.

3)若是定义在上的奇函数,且对任意恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点作圆的切线,设切点为.

(1)若点运动到处,求此时切线的方程;

(2)求满足的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上任意一点到两焦点距离之和为,离心率为

(1)求椭圆的标准方程;

(2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线,动直线过定点.

1)若直线与圆相切,求直线的方程;

2)若直线与圆相交于两点,点MPQ的中点,直线与直线相交于点N.探索是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案