【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
【答案】(1),;(2)
【解析】分析:解法一:(1)消去参数可得的普通方程为,则极坐标方程为.极坐标方程化为直角坐标方程可得的直角坐标方程为.
(2)设的极坐标分别为,则,联立极坐标方程可得, 则,结合三角函数的性质计算可得.
解法二: (1)同解法一
(2)曲线表示圆心为且半径为1的圆.联立直线参数方程的标准形式与圆的方程可得,结合参数的几何意义知, 则
解法三: (1)同解法一
(2)曲线表示圆心为且半径为1的圆. 的普通方程为, 由弦长公式可得,则是等边三角形,, .
详解:解法一:(1)由得的普通方程为,
又因为, 所以的极坐标方程为.
由得,即,
所以的直角坐标方程为.
(2)设的极坐标分别为,则
由消去得,
化为,即,
因为,即,所以,或,
即或所以.
解法二: (1)同解法一
(2)曲线的方程可化为,表示圆心为且半径为1的圆.
将的参数方程化为标准形式(其中为参数),代入的直角坐标方程为得,,
整理得,,解得或.
设对应的参数分别为 ,则.所以,
又因为是圆上的点,所以
解法三: (1)同解法一
(2)曲线的方程可化为,表示圆心为且半径为1的圆.
又由①得的普通方程为,
则点到直线的距离为,
所以,所以是等边三角形,所以,
又因为是圆上的点,所以 .
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面ABCD是正方形,AC与BD交于点O,底面ABCD,F为BE的中点,.
(1)求证:平面ACF;
(2)求BE与平面ACE的所成角的正切值;
(3)在线段EO上是否存在点G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c∈(0,+∞).
(1)若a=6,b=5,c=4是△ABC边BC,CA,AB的长,证明:cosA∈Q;
(2)若a,b,c分别是△ABC边BC,CA,AB的长,若a,b,c∈Q时,证明:cosA∈Q;
(3)若存在λ∈(-2,2)满足c2=a2+b2+λab,证明:a,b,c可以是一个三角形的三边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线C由上半椭圆C1: =1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为 .
(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
(1)求这100份数学试卷成绩的中位数;
(2)从总分在和的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com